【題目】A,B兩地相距80km,甲、乙兩人騎車同時分別從A,B兩地相向而行,假設(shè)他們都保持勻速行駛,則他們各自到A地的距離s(km)都是騎車時間t(h)的一次函數(shù),如圖所示.
(1)求乙的s乙與t之間的解析式;
(2)經(jīng)過多長時間甲乙兩人相距10km?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,鐵路上A,B兩點(diǎn)相距25 km,C,D為兩村莊,DA⊥AB于點(diǎn)A,CB⊥AB于點(diǎn)B,已知DA=15 km,CB=10 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,則E站應(yīng)建在離A站多少km處?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=AC,點(diǎn)P是AB上一動點(diǎn),點(diǎn)Q是AC的延長線上一動點(diǎn),且點(diǎn)P從B運(yùn)動向A、點(diǎn)Q從C運(yùn)動向Q移動的時間和速度相同,PQ與BC相交于點(diǎn)D,若AB=,BC=16.
(1)如圖1,當(dāng)點(diǎn)P為AB的中點(diǎn)時,求CD的長;
(2)如圖②,過點(diǎn)P作直線BC的垂線,垂足為E,當(dāng)點(diǎn)P、Q在移動的過程中,設(shè)BE+CD=λ,λ是否為常數(shù)?若是請求出λ的值,若不是請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人在一環(huán)形場地上鍛煉,甲騎自行車,乙跑步,甲比乙每分鐘快200m,兩人同時從起點(diǎn)同向出發(fā),經(jīng)過3min兩人首次相遇,此時乙還需跑150m才能跑完第一圈.
求甲、乙兩人的速度分別是每分鐘多少米?列方程或者方程組解答
若兩人相遇后,甲立即以每分鐘300m的速度掉頭向反方向騎車,乙仍按原方向繼續(xù)跑,要想不超過兩人再次相遇,則乙的速度至少要提高每分鐘多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某日,我邊防局通過雷達(dá)發(fā)現(xiàn)近海處有一可疑船只正向公海方向行駛,邊防局迅速派出快艇追趕(圖1).圖2中分別表示兩船相對于海岸的距離(海里)與追趕時間(分)之間的關(guān)系.
根據(jù)圖象回答問題:
(1)哪一條線表示到海岸的距離與追趕時間的關(guān)系;
(2)求出的函數(shù)關(guān)系式;
(3)根據(jù)國際慣例,當(dāng)船行駛到離海岸海里的公海時,將無法對其進(jìn)行檢查,照此速度,快艇能否在船駛?cè)牍G皩⑵鋽r截?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1 , y1),B(x2,y2),AB中點(diǎn)P的坐標(biāo)為(xp,yp).由xp﹣x1=x2﹣xp,得xp= ,同理yp= ,所以AB的中點(diǎn)坐標(biāo)為(,).由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A、B兩點(diǎn)間的距離公式為AB=.這兩公式對A、B在平面直角坐標(biāo)系中其它位置也成立.解答下列問題:
(1)已知M(1,﹣2),N(﹣1,2),直接利用公式填空:MN中點(diǎn)坐標(biāo)為________,MN=________.
(2)如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),P為AB的中點(diǎn),過P作x軸的垂線交拋物線于點(diǎn)C.
(a)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
(b)連結(jié)AB、AC,求證△ABC為直角三角形;
(c)將直線l平移到C點(diǎn)時得到直線l′,求兩直線l與l′的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=45°,AB=AC,點(diǎn)D為BC的中點(diǎn),直角∠MDN繞點(diǎn)D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F兩點(diǎn),下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結(jié)論是( )
A.①②③B.②③④C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,中線BE、CF相交于點(diǎn)G,連接EF,下列結(jié)論:
①=; ②=; ③=; ④=.其中正確的個數(shù)有( )
A. 1個 B. C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要設(shè)計一本書的封面,封面長27cm,寬21cm,正中央是一個與整個封面長寬比例相同的長方形,如果要使四周的彩色邊襯所占面積是封面面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,應(yīng)如何設(shè)計四周邊襯的寬度(結(jié)果保留根號)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com