【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺(tái)的利潤(rùn)為400元,B型電腦每臺(tái)的利潤(rùn)為500元.該商店計(jì)劃再一次性購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大,最大利潤(rùn)是多少?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購(gòu)進(jìn)A型電腦60臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案.
【答案】(1) =﹣100x+50000;(2) 該商店購(gòu)進(jìn)A型34臺(tái)、B型電腦66臺(tái),才能使銷售總利潤(rùn)最大,最大利潤(rùn)是46600元;(3)見(jiàn)解析.
【解析】(1)根據(jù)“總利潤(rùn)=A型電腦每臺(tái)利潤(rùn)×A電腦數(shù)量+B型電腦每臺(tái)利潤(rùn)×B電腦數(shù)量”可得函數(shù)解析式;
(2)根據(jù)“B型電腦的進(jìn)貨量不超過(guò)A型電腦的2倍且電腦數(shù)量為整數(shù)”求得x的范圍,再結(jié)合(1)所求函數(shù)解析式及一次函數(shù)的性質(zhì)求解可得;
(3)據(jù)題意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三種情況討論,①當(dāng)0<a<100時(shí),y隨x的增大而減小,②a=100時(shí),y=50000,③當(dāng)100<m<200時(shí),a﹣100>0,y隨x的增大而增大,分別進(jìn)行求解.
(1)根據(jù)題意,y=400x+500(100﹣x)=﹣100x+50000;
(2)∵100﹣x≤2x,
∴x≥,
∵y=﹣100x+50000中k=﹣100<0,
∴y隨x的增大而減小,
∵x為正數(shù),
∴x=34時(shí),y取得最大值,最大值為46600,
答:該商店購(gòu)進(jìn)A型34臺(tái)、B型電腦66臺(tái),才能使銷售總利潤(rùn)最大,最大利潤(rùn)是46600元;
(3)據(jù)題意得,y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,
33≤x≤60,
①當(dāng)0<a<100時(shí),y隨x的增大而減小,
∴當(dāng)x=34時(shí),y取最大值,
即商店購(gòu)進(jìn)34臺(tái)A型電腦和66臺(tái)B型電腦的銷售利潤(rùn)最大.
②a=100時(shí),a﹣100=0,y=50000,
即商店購(gòu)進(jìn)A型電腦數(shù)量滿足33≤x≤60的整數(shù)時(shí),均獲得最大利潤(rùn);
③當(dāng)100<a<200時(shí),a﹣100>0,y隨x的增大而增大,
∴當(dāng)x=60時(shí),y取得最大值.
即商店購(gòu)進(jìn)60臺(tái)A型電腦和40臺(tái)B型電腦的銷售利潤(rùn)最大.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,CA=4,CB=3. 與CA延長(zhǎng)線、AB、CB延長(zhǎng)線相切,切點(diǎn)分別為E、D、F,則該弧所在圓的半徑為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A和點(diǎn)B為圓心,以相同的長(zhǎng)(大于 AB)為半徑作弧,兩弧相交于點(diǎn)M和點(diǎn)N,作直線MN交AB于點(diǎn)D,交BC于點(diǎn)E.若AC=3,AB=5,則DE等于( )
A.2
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1的正方形,我們把以格點(diǎn)連線為邊的多邊形稱為“格點(diǎn)多邊形”.如圖①中四邊形就是一個(gè)“格點(diǎn)四邊形”.
(1)作出四邊形關(guān)于直線對(duì)稱的四邊形;
(2)圖①中四邊形的面積是;
(3)在圖②方格紙中畫一個(gè)格點(diǎn)三角形,使的面積等于8且為軸對(duì)稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,直線與軸交于點(diǎn),直線與軸及直線分別交于點(diǎn).點(diǎn)關(guān)于軸對(duì)稱,連接.
(1)求點(diǎn)的坐標(biāo)及直線的表達(dá)式;
(2)設(shè)面積的和,求的值;
(3)在求(2)中時(shí),嘉琪有個(gè)想法:“將沿軸翻折到的位置,與四邊形拼接后可看成,這樣求便轉(zhuǎn)化為直接求的面積不更快捷嗎?”但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn),請(qǐng)通過(guò)計(jì)算解釋他的想法錯(cuò)在哪里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果種植場(chǎng)今年收獲的“妃子笑”和“無(wú)核Ⅰ號(hào)”兩種荔枝共3200 千克,全部售出后賣了30400 元.已知“妃子笑”荔枝每千克售價(jià)8 元,“無(wú)核Ⅰ號(hào)”荔枝每千克售價(jià)12 元,問(wèn)該種植場(chǎng)今年這兩種荔枝各收獲多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八年級(jí)(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請(qǐng)了部分同學(xué)參與問(wèn)卷調(diào)查,統(tǒng)計(jì)同學(xué)們一個(gè)月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息解決下列問(wèn)題:
(1)共有多少名同學(xué)參與問(wèn)卷調(diào)查;
(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;
(3)全校共有學(xué)生1500人,請(qǐng)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為積極響應(yīng)南充市創(chuàng)建“全國(guó)衛(wèi)生城市”的號(hào)召,某校1 500名學(xué)生參加了衛(wèi)生知識(shí)競(jìng)賽,成績(jī)記為A、B、C、D四等。從中隨機(jī)抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖表,根據(jù)圖表信息,以下說(shuō)法不正確的是( )
A.樣本容量是200
B.D等所在扇形的圓心角為15°
C.樣本中C等所占百分比是10%
D.估計(jì)全校學(xué)生成績(jī)?yōu)锳等大約有900人
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,已知線段AB=16 cm,點(diǎn)C為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)C不與A,B重合),點(diǎn)D,E分別是AC和BC的中點(diǎn).
(1)求DE的長(zhǎng);
(2)知識(shí)遷移:如圖②,已知∠AOB=130°,過(guò)角的內(nèi)部任一點(diǎn)C畫射線OC,若OD,OE分別平分∠AOC和∠BOC,試說(shuō)明∠DOE的大小與射線OC的位置無(wú)關(guān).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com