如圖,O是已知線段AB上一點,以O(shè)B為半徑的⊙O交線段AB于點C,以線段AO為直徑的半圓交⊙O于點D,過點B作AB的垂線與AD的延長線交于點E;
(1)求證:AE切⊙O于點D;
(2)若AC=2,且AC、AD的長是關(guān)于x的方程x2-kx+4
5
=0
的兩根,求線段EB的長.
(1)證明:連接OD.
∵AO為半圓直徑,∴∠ADO=90°.
∴AE切⊙O于點D;

(2)∵AC、AD的長是關(guān)于x的方程x2-kx+4
5
=0
的兩根,
∴AC•AD=4
5

∵AC=2,
∴AD=2
5

設(shè)OD=OC=x,則(x+2)2=(2
5
2+x2
解得x=4.
∴AB=2+8=10.
∵∠ADO=∠ABE=90°,∠A=∠A,
∴△AOD△AEB,
OD
BE
=
AD
AB
,即
4
BE
=
2
5
10
,
∴BE=4
5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC中,∠C=90°,BC=3,AC=4,D為AC上一點,以CD為直徑的⊙O切AB于點E.求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB為⊙O的直徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB=BC,過點A的切線與OC的延長線相交于點D,∠BAC=75°,CD=
3
,則AD的長為(  )
A.2
3
B.3C.3
3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,割線ABC與⊙O相交于B、C兩點,D為⊙O上一點,E為弧BC的中點,OE交BC于F,DE交AC于G,∠ADG=∠AGD.
(1)求證:AD是⊙O的切線;
(2)如果AB=2,AD=4,EG=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知等邊△ABC,以邊BC為直徑的半圓與邊AB,AC分別交于點D,點E,過點D作DF⊥AC,垂足為點F.
(1)判斷DF與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)過點F作FH⊥BC,垂足為點H.若等邊△ABC的邊長為4,求FH的長.
(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,⊙O的圓心在Rt△ABC的直角邊AC上,⊙O經(jīng)過C、D兩點,與斜邊AB交于點E,連接BO、ED,有BOED,作弦EF⊥AC于G,連接DF.
(1)求證:AB為⊙O的切線;
(2)若⊙O的半徑為5,sin∠DFE=
3
5
,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,直線EF與⊙O相切于點C,AB是⊙O的直徑,且BC=3,Ac=4.
(1)求半徑OC的長;
(2)在切線EF上找一點M,使得以B、M、C為頂點的三角形與△ACO相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ABCD,∠B=90°,AB=AD,∠BAD的平分線交BC于E,連接DE.
(1)說明點D在△ABE的外接圓上;
(2)若∠AED=∠CED,試判斷直線CD與△ABE外接圓的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案