【題目】為了從甲、乙兩名選手中選拔一個(gè)參加射擊比賽,現(xiàn)對(duì)他們進(jìn)行一次測(cè)驗(yàn),兩個(gè)人在相同條件下各射靶次,為了比較兩人的成績(jī),制作了如下統(tǒng)計(jì)圖表:
甲乙射擊成績(jī)統(tǒng)計(jì)表
平均數(shù) | 中位數(shù) | 方差 | 命中環(huán)的次數(shù) | |
甲 | ||||
乙 |
甲乙射擊成績(jī)折線圖
(1)請(qǐng)補(bǔ)全上述圖表(請(qǐng)直接在統(tǒng)計(jì)表中填空和補(bǔ)全折線圖);
(2)如果規(guī)定成績(jī)較穩(wěn)定者勝出,則_____勝出,理由是____________________;
(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應(yīng)該制定怎樣的評(píng)判規(guī)則?說(shuō)明理由.
【答案】(1)補(bǔ)全圖表見(jiàn)解析;(2)甲,理由見(jiàn)解析;(3)可制定評(píng)判規(guī)則為:命中10環(huán)次數(shù)較多者勝出,理由見(jiàn)解析.
【解析】
(1)根據(jù)甲選手成績(jī)的平均數(shù)可求出甲選手第8次命中的環(huán)數(shù),即可補(bǔ)全折線圖;然后根據(jù)平均數(shù)、中位數(shù)和方差的求法補(bǔ)全統(tǒng)計(jì)表;
(2)根據(jù)方差的意義可得答案;
(3)可根據(jù)乙選手命中環(huán)1次,甲選手沒(méi)有命中環(huán)來(lái)制定評(píng)判規(guī)則.
解:(1)甲選手第8次命中的環(huán)數(shù)為:7×10-(9+6+7+6+5+7+7+8+9)=6,
將甲選手的成績(jī)從小到大排列為:5,6,6,6,7,7,7,8,9,9,
中間兩次的環(huán)數(shù)分別為:7,7,故中位數(shù)為,
,
乙選手成績(jī)的平均數(shù)為:,
補(bǔ)全表格和折線圖為:
平均數(shù) | 中位數(shù) | 方差 | 命中環(huán)的次數(shù) | |
甲 | 7 | 1.6 | ||
乙 | 7 |
(2)如果規(guī)定成績(jī)較穩(wěn)定者勝出,則甲勝出,
理由:因?yàn)榧椎姆讲钚∮谝业姆讲睿?/span>
所以甲的成績(jī)比乙穩(wěn)定,即甲勝出;
(3)可制定評(píng)判規(guī)則為:命中10環(huán)次數(shù)較多者勝出,
理由:因?yàn)橐疫x手命中環(huán)1次,甲選手沒(méi)有命中環(huán),
所以乙勝出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個(gè)實(shí)數(shù)根.
(1)求m的取值范圍;
(2)設(shè)p是方程的一個(gè)實(shí)數(shù)根,且滿足(p2﹣2p+3)(m+4)=7,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果將(a+b)n(n為非負(fù)整數(shù))的每一項(xiàng)按字母a的次數(shù)由大到小排列,可以得到下面的等式(1),然后將每個(gè)式子的各項(xiàng)系數(shù)排列成(2):(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;根據(jù)規(guī)律可得:(a+b)5=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】大成蔬菜公司以元千克的成本價(jià)購(gòu)進(jìn)番茄,公司想知道番茄的損壞率,從所有隨機(jī)抽取若干進(jìn)行統(tǒng)計(jì),部分結(jié)果如表:
番茄總質(zhì)量 | ||||||
損壞番茄質(zhì)量 | ||||||
番茄損壞的頻率 |
估計(jì)這批番茄損壞的概率為______(精確到),據(jù)此,若公司希望這批番茄能獲得利潤(rùn)元,則銷售時(shí)(去掉損壞的番茄)售價(jià)應(yīng)至少定為______元/千克.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年3月1日,某園林公司派出一批工人去完成種植2200棵景觀樹(shù)木的任務(wù),這批工人3月1日到5日種植的數(shù)量(單位:棵)如圖所示.
(1)這批工人前兩天平均每天種植多少棵景觀樹(shù)木?
(2)因業(yè)務(wù)需要,到3月10日必須完成種植任務(wù),你認(rèn)為該園林公司是否需要增派工人?請(qǐng)運(yùn)用統(tǒng)計(jì)知識(shí)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在⊙O中,點(diǎn)C在劣弧上,D是弦AB上的點(diǎn),∠ACD=40°.
(1)如圖1,若⊙O的半徑為3,∠CDB=70°,求的長(zhǎng);
(2)如圖2,若DC的延長(zhǎng)線上存在點(diǎn)P,使得PD=PB,試探究∠ABC與∠OBP的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空:如圖,已知DG⊥BC,BC⊥AC,EF⊥AB,∠1=∠2,試判斷CD與AB的位置關(guān)系:
解:CD⊥AB
∵DG⊥BC,BC⊥AC(已知)
∴∠DGB=∠_____=90°(垂直定義)
∴DG∥AC,(____________________)
∴∠2=∠_________.(兩直線平行,內(nèi)錯(cuò)角相等)
∵∠1=∠2(已知)
∴∠1=∠________(等量代換)
∴EF∥______(同位角相等,兩直線平行)
∴∠AEF=∠ADC,(________________)
∵EF⊥AB,
∴∠AEF=90°
∴∠ADC=90°
即:CD⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A為平面直角坐標(biāo)系第一象限內(nèi)一點(diǎn),直線y=x過(guò)點(diǎn)A,過(guò)點(diǎn)A作AD⊥y軸于點(diǎn)D,點(diǎn)B是y軸正半軸上一動(dòng)點(diǎn),連接AB,過(guò)點(diǎn)A作AC⊥AB交x軸于點(diǎn)C.
(1)如圖,當(dāng)點(diǎn)B在線段OD上時(shí),求證:AB=AC;
(2)①如圖,當(dāng)點(diǎn)B在OD延長(zhǎng)線上,且點(diǎn)C在x軸正半軸上, OA、OB、OC之間的數(shù)量關(guān)系為________(不用說(shuō)明理由);
②當(dāng)點(diǎn)B在OD延長(zhǎng)線上,且點(diǎn)C在x軸負(fù)半軸上,寫出OA、OB、OC之間的數(shù)量關(guān)系,并說(shuō)明原因.
(3)直線BC分別與直線AD、直線y=x交于點(diǎn)E、F,若BE=5,CF=12,直接寫出AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】養(yǎng)成良好的早鍛煉習(xí)慣,對(duì)學(xué)生的學(xué)習(xí)和生活都非常有益,某中學(xué)為了了解七年級(jí)學(xué)生的早鍛煉情況,校政教處在七年級(jí)隨機(jī)抽取了部分學(xué)生,并對(duì)這些學(xué)生通常情況下一天的早鍛煉時(shí)間x(分鐘)進(jìn)行了調(diào)查.現(xiàn)把調(diào)查結(jié)果分成A、B、C、D四組,如下表所示,同時(shí),將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)以上提供的信息,解答下列問(wèn)題:
(1)補(bǔ)全頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖;
(2)所抽取的七年級(jí)學(xué)生早鍛煉時(shí)間的中位數(shù)落在 區(qū)間內(nèi);
(3)已知該校七年級(jí)共有1200名學(xué)生,請(qǐng)你估計(jì)這個(gè)年級(jí)學(xué)生中約有多少人一天早鍛煉的時(shí)間不少于20分鐘.(早鍛煉:指學(xué)生在早晨7:00~7:40之間的鍛煉)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com