【題目】已知⊙O的直徑AB=4,點(diǎn)C在⊙O上,連接AC,沿AC折疊劣弧,記折疊后的劣弧為.
(1)如圖1,當(dāng)經(jīng)過圓心O時(shí),求的長(zhǎng).
(2)如圖2,當(dāng)與AB相切于A時(shí).
①畫出所在的圓的圓心P.
②求出陰影部分弓形的面積.
【答案】(1);(2)π﹣2.
【解析】
(1)只要證明△EA O是等邊三角形即可解決問題;
(2)①過A點(diǎn)作AP⊥AB,再截取AP=2,則P點(diǎn)為所求,如圖2;
②只要證明四邊形AOCP是正方形即可解決問題.
(1)作半徑OE⊥AC于F,連接AE,如圖1,
∵沿AC折疊劣弧,記折疊后的劣弧為,
∴OF=OE=OF,
∵OE⊥AC,
∴AE=AO,
∵OA=OE,
∴AE=AO=OE,
∴△AOE是等邊三角形,
∴∠AEO=60°,
∴的長(zhǎng)=;
(2)①過A點(diǎn)作AP⊥AB,再截取AP=2,則P點(diǎn)為所求,如圖2;
②連結(jié)PC、OC,
∵AP=OA=OC=PC=2,
∴四邊形PAOC為菱形,
而∠PAO=90°,
∴四邊形PAOC為正方形,
∴S陰=×2×2=π﹣2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中,E為BC邊上一點(diǎn),G為BC延長(zhǎng)線上一點(diǎn),過點(diǎn)E作∠AEM=60°,交∠ACG的平分線于點(diǎn)M.
(1)如圖1,當(dāng)點(diǎn)E在BC邊的中點(diǎn)位置時(shí),求證:AE=EM;
(2)如圖2,當(dāng)點(diǎn)E在BC邊的任意位置時(shí),(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=BC,CD⊥AB于點(diǎn)D,CD=BD,BE平分∠ABC,點(diǎn)H是BC邊的中點(diǎn),連接DH,交BE于點(diǎn)G.
(1)求證:△ADC≌△FDB;
(2)求證:CE=BF;
(3)連結(jié)CG,判斷△ECG的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水果店以每千克6元的價(jià)格購(gòu)進(jìn)蘋果若干千克,銷售了部分蘋果后,余下的蘋果每千克降價(jià)3元銷售,全部售完。銷售金額y(元)與銷售量x(千克)之間的關(guān)系如圖所示,請(qǐng)根據(jù)圖象提供的信息完成下列問題:
(1)降價(jià)前蘋果的銷售單價(jià)是 元/千克;
(2)求降價(jià)后銷售金額y(元)與銷售量x(千克)之間的函數(shù)表達(dá)式,并寫出自變量的取值范圍;
(3)該水果店這次銷售蘋果盈利了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某次訓(xùn)練中,甲、乙兩名射擊運(yùn)動(dòng)員各射擊10發(fā)子彈的成績(jī)統(tǒng)計(jì)圖如圖所示,對(duì)于本次訓(xùn)練,有如下結(jié)論:①S甲2>S乙2;②S甲2<S乙2;③甲的射擊成績(jī)比乙穩(wěn)定;④乙的射擊成績(jī)比甲穩(wěn)定,由統(tǒng)計(jì)圖可知正確的結(jié)論是( )
A.①③ B.①④ C.②③ D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點(diǎn),E是BF上一點(diǎn),連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結(jié)論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“8字”的性質(zhì)及應(yīng)用:
(1)如圖①,AD、BC相交于點(diǎn)O,得到一個(gè)“8字”ABCD,求證:∠A+∠B=∠C+∠D.
(2)圖②中共有多少個(gè)“8字”?
(3)如圖②,∠ABC和∠ADC的平分線相交于點(diǎn)E,利用(1)中的結(jié)論證明∠E=(∠A+∠C).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC于E,AF⊥CD于F,BD分別與AE、AF相交于G、H.
(1)在圖中找出與△ABE相似的三角形,并說(shuō)明理由;
(2)若AG=AH,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線經(jīng)過點(diǎn)A(,0),B(,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com