【題目】按要求完成下列推理證明.

如圖,已知點DBC延長線上一點,CEAB

求證:∠A+B+ACB180°

證明:∵CEAB,

∴∠1   ,(   

2   ,(   

又∠1+2+ACB180°(平角的定義),

∴∠A+B+ACB180°

【答案】B;兩直線平行,同位角相等;∠A;兩直線平行,內(nèi)錯角相等.

【解析】

根據(jù)平行線的性質(zhì)得出∠1=∠B,∠2=∠A,即可得出答案.

證明:CEAB

∴∠1B,( 兩直線平行,同位角相等)

∠2A,(兩直線平行,內(nèi)錯角相等)

∠1+∠2+∠ACB180°(平角的定義),

∴∠A+∠B+∠ACB180°,

故答案為:B;兩直線平行,同位角相等;∠A;兩直線平行,內(nèi)錯角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們將在直角坐標(biāo)系中圓心坐標(biāo)和半徑均為整數(shù)的圓稱為整圓.如圖,直線l:y=kx+4x軸、y軸分別交于A、B,OAB=30°,點Px軸上,⊙Pl相切,當(dāng)P在線段OA上運動時,使得⊙P成為整圓的點P個數(shù)是( 。

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等邊△ABC中,點E、D分別是ACBC邊的中點,點PAB邊上的一個動點,連接PE,PDPC,DE,設(shè),圖1中某條線段的長為y,若表示yx的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是圖1中的( )(提示:過點E、C、DAB的垂線)

A.線段PDB.線段PCC.線段DED.線段PE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c(a<0)經(jīng)過點(-1,0),且滿足4a+2b+c>0.以下結(jié)論(1)a+b>0;(2)a+c>0;(3)-a+b+c>0;(4)b2-2ac>5a2其中正確的個數(shù)有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y= ax2+bx+c開口向下,并且經(jīng)過A(0,1)和M(2,-3)兩點。

(1)若拋物線的對稱軸為直線x= -1,求此拋物線的解析式;

(2)如果拋物線的對稱軸在y軸的左側(cè),試求a的取值范圍;

(3)如果拋物線與x軸交于B、C兩點,且∠BAC=90,求此時a的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDAB,OE平分∠AODOFOE,OGCD,∠CDO50°,則下列結(jié)論:① AOE65°;② OF平分∠BOD;③ GOE=∠DOF;④ AOE=∠GOD,其中正確結(jié)論的個數(shù)是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃岡某地杜鵑節(jié)期間,某公司70名職工組團(tuán)前往參觀欣賞,旅游景點規(guī)定:門票每人60元,無優(yōu)惠;上山游玩可坐景點觀光車,觀光車有四座和十一座車,四座車每輛60元,十一座車每人10.公司職工正好坐滿每輛車且總費用不超過5000元,問公司租用的四座車和十一座車各多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y1=(x+1)2+1與y2=a(x﹣4)2﹣3交于點A(1,3),過點A作x軸的平行線,分別交兩條拋物線于B,C兩點,且D,E分別為頂點.則下列結(jié)論:

①a=;②AC=AE;③△ABD是等腰直角三角形;④當(dāng)x>1時y1>y2.

其中正確的結(jié)論是(  )

A. ①③④ B. ①③ C. ①②④ D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為大力弘揚“奉獻(xiàn)、友愛、互助、進(jìn)步”的志愿服務(wù)精神,傳播“奉獻(xiàn)他人、提升自我”的志愿服務(wù)理念,東營市某中學(xué)利用周末時間開展了“助老助殘、社區(qū)服務(wù)、生態(tài)環(huán)保、網(wǎng)絡(luò)文明”四個志愿服務(wù)活動(每人只參加一個活動),九年級某班全班同學(xué)都參加了志愿服務(wù),班長為了解志愿服務(wù)的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)求該班的人數(shù);

(2)請把折線統(tǒng)計圖補(bǔ)充完整;

(3)求扇形統(tǒng)計圖中,網(wǎng)絡(luò)文明部分對應(yīng)的圓心角的度數(shù);

(4)小明和小麗參加了志愿服務(wù)活動,請用樹狀圖或列表法求出他們參加同一服務(wù)活動的概率.

查看答案和解析>>

同步練習(xí)冊答案