【題目】計算:
(1) +( +1)0
(2)( + 2﹣( 2

【答案】
(1)解: +( +1)0

=3 +1

= +1


(2)解:( + 2﹣( 2

=a+2 +b﹣a+2 ﹣b

=4


【解析】(1)根據(jù)二次根式的性質(zhì)、零指數(shù)冪的性質(zhì)計算;(2)根據(jù)完全平方公式把原式展開,再合并同類二次根式即可.
【考點精析】利用零指數(shù)冪法則和二次根式的混合運算對題目進行判斷即可得到答案,需要熟知零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));二次根式的混合運算與實數(shù)中的運算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,M的圓心M(﹣1,2),M經(jīng)過坐標原點O,與y軸交于點A,經(jīng)過點A的一條直線l解析式為:y=﹣x+4與x軸交于點B,以M為頂點的拋物線經(jīng)過x軸上點D(2,0)和點C(﹣4,0).

(1)求拋物線的解析式;

(2)求證:直線l是M的切線;

(3)點P為拋物線上一動點,且PE與直線l垂直,垂足為E,PFy軸,交直線l于點F,是否存在這樣的點P,使PEF的面積最。咳舸嬖,請求出此時點P的坐標及PEF面積的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,在正方形中,點分別在上,于點,求證;

如圖,將中的正方形改為矩形,于點,探究的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國高速公路發(fā)展迅速,據(jù)報道,到目前為止,全國高速公路總里程約為10.8萬千米,10.8萬用科學(xué)記數(shù)法表示為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:
數(shù)學(xué)課上,老師讓同學(xué)們解答課本中的習(xí)題:如圖1,在四邊形ABCD中,E、F、
G、H分別是各邊的中點,猜想四邊形EFGH的形狀并證明自己的猜想.
小麗在思考問題時,有如下思路:連接AC

結(jié)合小麗的思路作答:
(1)若只改變圖1中的四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?請說明理由

參考小麗思考問題方法,解決以下問題:
(2)如圖2,在(1)的條件下,若連接AC、BD
①當AC與BD滿足什么關(guān)系時,四邊形EFGH是菱形.寫出結(jié)論并證明.
②當AC與BD滿足什么關(guān)系時,四邊形EFGH是正方形.直接寫出結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y﹣2與x成正比例,當x=1時,y=5,那么y與x的函數(shù)關(guān)系式是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點,拋物線經(jīng)過點,.

(1)求點B的坐標和拋物線的解析式;

(2)M(m,0)為x軸上一個動點,過點M垂直于x軸的直線與直線AB和拋物線分別交于點P、N,

在線段上運動,若以,為頂點的三角形與相似,求點的坐標;

軸上自由運動,若三個點,,中恰有一點是其它兩點所連線段的中點(三點重合除外),則稱,三點為共諧點.請直接寫出使得,,三點成為共諧點的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O(0,0),A(0,1)是正方形的兩個頂點,以對角線OA1為邊作正方形 OAA1B 再以正方形OA1A2B1的對角線OA2作正方形OA2A3B2 , …,依此規(guī)律,則點A8的坐標是( )

A.(﹣8,0)
B.(0,8)
C.(0,8
D.(0,16)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分7分)

某校在藝術(shù)節(jié)選拔節(jié)目過程中,從備選的街舞、爵士、民族拉丁四種類型舞蹈中,選擇一種學(xué)生最喜愛的舞蹈,為此,隨機調(diào)查了本校的部分學(xué)生,并將調(diào)查結(jié)果繪制成如下統(tǒng)計圖表(每位學(xué)生只選擇一種類型),根據(jù)統(tǒng)計圖表的信息,解答下列問題:

本次抽樣調(diào)查的學(xué)生人數(shù)及a、b的值.

將條形統(tǒng)計圖補充完整.

若該校共有1500名學(xué)生,試估計全校喜歡拉丁舞蹈的學(xué)生人數(shù).

類型

民族

拉丁

爵士

街舞

據(jù)點百分比

a

30%

b

15%

查看答案和解析>>

同步練習(xí)冊答案