如圖1,在正方形ABCD的外側(cè),作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.
(1)請(qǐng)判斷:AF與BE的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問(wèn)中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問(wèn)中的結(jié)論都能成立嗎?請(qǐng)直接寫(xiě)出你的判斷.
| |||||||||||||||||
|
| ||||||||||||||||
| |||||||||||||||||
| |||||||||||||||||
解:(1)AF=BE,AF⊥BE. ························ 2分
(2)結(jié)論成立.····························· 3分
證明:∵四邊形ABCD是正方形,
∴BA=AD =DC,∠BAD =∠ADC = 90°.
在△EAD和△FDC中,
∴△EAD≌△FDC.
∴∠EAD=∠FDC.
∴∠EAD+∠DAB=∠FDC+∠CDA,即∠BAE=∠ADF.··············· 4分
在△BAE和△ADF中,
∴△BAE≌△ADF.
∴BE = AF,∠ABE=∠DAF.························ 6分
∵∠DAF +∠BAF=90°,
∴∠ABE +∠BAF=90°,
∴AF⊥BE.······························· 9分
(3)結(jié)論都能成立.·························· 11分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知在△ABC中,∠B=90o,以AB上的一點(diǎn)O為圓心,以OA為半徑的圓交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)求證:AC·AD=AB·AE;
(2)如果BD是⊙O的切線(xiàn),D是切點(diǎn),E是OB的中點(diǎn),當(dāng)BC=2時(shí),求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
要將拋物線(xiàn)平移后得到拋物線(xiàn),下列平移方法正確的是
(A) 向左平移1個(gè)單位,再向上平移2個(gè)單位.
(B) 向左平移1個(gè)單位,再向下平移2個(gè)單位.
(C) 向右平移1個(gè)單位,再向上平移2個(gè)單位.
(D) 向右平移1個(gè)單位,再向下平移2個(gè)單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,直線(xiàn)被直線(xiàn)所截,與是
A、同位角 B、內(nèi)錯(cuò)角 C、同旁?xún)?nèi)角 D、鄰補(bǔ)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,∠AOB=30°,點(diǎn)M、N分別是射線(xiàn)OA、OB上的動(dòng)點(diǎn),OP平分∠AOB,且OP=6,當(dāng)△PMN的周長(zhǎng)取最小值時(shí),四邊形PMON的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com