如圖,已知在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AG•AB=12,求AC的長;
(3)在滿足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑及sin∠ACE的值.

【答案】分析:(1)根據(jù)圓周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC=90°進(jìn)而得出答案;
(2)首先得出△CAG∽△BAC,進(jìn)而得出AC2=AG•AB,求出AC即可;
(3)先求出AF的長,根據(jù)勾股定理得:AG=,即可得出sin∠ADB=,利用∠ACE=∠ACB=∠ADB,求出即可.
解答:(1)證明:連接CD,
∵AD是⊙O的直徑,
∴∠ACD=90°,
∴∠CAD+∠ADC=90°,
又∵∠PAC=∠PBA,∠ADC=∠PBA,
∴∠PAC=∠ADC,
∴∠CAD+∠PAC=90°,
∴PA⊥OA,而AD是⊙O的直徑,
∴PA是⊙O的切線;

(2)解:由(1)知,PA⊥AD,又∵CF⊥AD,∴CF∥PA,
∴∠GCA=∠PAC,又∵∠PAC=∠PBA,
∴∠GCA=∠PBA,而∠CAG=∠BAC,
∴△CAG∽△BAC,
=
即AC2=AG•AB,
∵AG•AB=12,
∴AC2=12,
∴AC=2;

(3)解:設(shè)AF=x,∵AF:FD=1:2,∴FD=2x,
∴AD=AF+FD=3x,
在Rt△ACD中,∵CF⊥AD,∴AC2=AF•AD,
即3x2=12,
解得;x=2,
∴AF=2,AD=6,∴⊙O半徑為3,
在Rt△AFG中,∵AF=2,GF=1,
根據(jù)勾股定理得:AG===
由(2)知,AG•AB=12,
∴AB==,
連接BD,
∵AD是⊙O的直徑,
∴∠ABD=90°,
在Rt△ABD中,∵sin∠ADB=,AD=6,
∴sin∠ADB=,
∵∠ACE=∠ACB=∠ADB,
∴sin∠ACE=
點評:此題主要考查了圓的綜合應(yīng)用以及勾股定理和銳角三角函數(shù)關(guān)系等知識,根據(jù)已知得出AG的長以及AB的長是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•包頭)如圖,已知在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AG•AB=12,求AC的長;
(3)在滿足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑及sin∠ACE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在等邊三角形ABC的邊AC、BC上各取一點P、Q,且AP=CQ,AQ、BP相交于點O,
(1)求證:△ABP≌△ACQ;
(2)求∠BOQ的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年內(nèi)蒙古包頭市高級中等學(xué)校招生考試數(shù)學(xué) 題型:044

如圖,已知在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.

(1)求證:PA是⊙O的切線;

(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AG·AB=12,求AC的長;

(3)在滿足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑,及sin∠ACE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中畢業(yè)升學(xué)考試(內(nèi)蒙古包頭卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,已知在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.

(1)求證:PA是⊙O的切線;

(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AG•AB=12,求AC的長;

(3)在滿足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑及sin∠ACE的值.

 

查看答案和解析>>

同步練習(xí)冊答案