【題目】如圖所示,△ABC≌△DEC,∠ACB=60°,∠BCD=100°,點(diǎn)A恰好落在線段ED上,則∠B的度數(shù)為(

A.50°
B.60°
C.55°
D.65°

【答案】A
【解析】解:∵△ABC≌△DEC,
∴∠DCE=∠ACB=60°,AC=CD,∠D=∠BAC,
∴∠D=∠DAC,
∵∠ACE=100°,
∴∠ACD=∠ACE﹣∠ACB=100°﹣60°=40°,
∴∠BAC=∠D= ×(180°﹣40°)=70°,
∴∠B=180°﹣∠ACB﹣∠BAC=180°﹣70°﹣60°=50°,
故選A.
根據(jù)全等三角形對(duì)應(yīng)角相等可得∠DCE=∠ACB,AC=CD,∠D=∠BAC,求出∠D=∠DAC,然后求出∠ACD,根據(jù)三角形內(nèi)角和定理求出∠D,求出∠BAC,根據(jù)三角形內(nèi)角和定理求出即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年,深圳市人居環(huán)境委通報(bào)了2014年深圳市大氣PM2.5來源研究成果.報(bào)告顯示主要來源有,A:機(jī)動(dòng)車尾氣,B:工業(yè)VOC轉(zhuǎn)化及其他工業(yè)過程,C:揚(yáng)塵,D:遠(yuǎn)洋船,E:電廠,F(xiàn):其它.某教學(xué)學(xué)習(xí)小組根據(jù)這些數(shù)據(jù)繪制出了如下兩幅尚不完整的統(tǒng)計(jì)圖(圖1,圖2).

請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)圖2的扇形統(tǒng)計(jì)圖中,x的值是;
(2)請(qǐng)補(bǔ)全圖1中的條形統(tǒng)計(jì)圖;
(3)圖2的扇形統(tǒng)計(jì)圖中,“A:機(jī)動(dòng)車尾氣”所在扇形的圓心角度數(shù)為度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀
(1)閱讀理解:

如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線AD的取值范圍是;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E,F(xiàn)兩點(diǎn),連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能判定直線a與b平行的是(

A.∠1=∠2
B.∠2=∠3
C.∠3=∠5
D.∠3+∠4=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB=AC=AD,且AD∥BC,求證:∠C=2∠D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小亮在上午8時(shí)、9時(shí)30分、10時(shí)、12時(shí)四次到室外的陽光下觀察向日葵的頭莖隨太陽轉(zhuǎn)動(dòng)的情況,無意之中,他發(fā)現(xiàn)這四個(gè)時(shí)刻向日葵影子的長(zhǎng)度各不相同,那么影子最長(zhǎng)的時(shí)刻為(

A. 上午8時(shí) B. 上午9時(shí)30 C. 上午10時(shí) D. 上午12時(shí)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在體育健康測(cè)試中,有8名男生引體向上的成績(jī)(單位:次)分別是:14,12,8,9,16,127,這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是( )

A. 10,12 B. 12, 11 C. 11,12 D. 1212

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)(2m+1)2-(2m+1)(2m-1);

(2)(2xy-3z)2-(2xy+3z)2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=mx2+2x+1的圖象與x軸只有一個(gè)公共點(diǎn),則常數(shù)m的值是

查看答案和解析>>

同步練習(xí)冊(cè)答案