【題目】如圖,⊙O的直徑AB為10cm,弦BC為5cm,D、E分別是∠ACB的平分線與⊙O,AB的交點(diǎn),P為AB延長線上一點(diǎn),且PC=PE.
(1)求AC、AD的長;
(2)試判斷直線PC與⊙O的位置關(guān)系,并說明理由.

【答案】
(1)

解:①如圖,連接BD,

∵AB是直徑,

∴∠ACB=∠ADB=90°,

在Rt△ABC中,

AC= = =5 (cm),

②∵CD平分∠ACB,

∴∠ACD=∠BCD,

,

∴AD=BD,

∴Rt△ABD是直角等腰三角形,

∴AD= AB= ×10=5 cm;


(2)

解:直線PC與⊙O相切,

理由:連接OC,

∵OC=OA,

∴∠CAO=∠OCA,

∵PC=PE,

∴∠PCE=∠PEC,

∵∠PEC=∠CAE+∠ACE,

∵CD平分∠ACB,

∴∠ACE=∠ECB,

∴∠PCB=∠CAO=∠ACO,

∵∠ACB=90°,

∴∠OCP=∠OCB+∠PCB=∠ACO+∠OCB=∠ACB=90°,

即OC⊥PC,

∴直線PC與⊙O相切.


【解析】(1)連接BD,先求出AC,在Rt△ABC中,運(yùn)用勾股定理求AC,②由CD平分∠ACB,得出AD=BD,所以Rt△ABD是直角等腰三角形,求出AD,(2)連接OC,由角的關(guān)系求出∠PCB=∠ACO,可得到∠OCP=90°,所以直線PC與⊙O相切.
【考點(diǎn)精析】本題主要考查了勾股定理的概念和圓周角定理的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:只有一組對(duì)角是直角的四邊形叫做損矩形,連接它的兩個(gè)非直角頂點(diǎn)的線段叫做這個(gè)損矩形的直徑,即損矩形外接圓的直徑.如圖,△ABC中,∠ABC=90°,以AC為一邊向形外作菱形ACEF,點(diǎn)D是菱形ACEF對(duì)角線的交點(diǎn),連接BD.若∠DBC=60°,∠ACB=15°,BD=,則菱形ACEF的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)國家的“一帶一路”經(jīng)濟(jì)發(fā)展戰(zhàn)略,樹立品牌意識(shí),我市質(zhì)檢部門對(duì)A、B、C、D四個(gè)廠家生產(chǎn)的同種型號(hào)的零件共2000件進(jìn)行合格率檢測(cè),通過檢測(cè)得出C廠家的合格率為95%,并根據(jù)檢測(cè)數(shù)據(jù)繪制了如圖1、圖2兩幅不完整的統(tǒng)計(jì)圖.

(1)抽查D廠家的零件為 件,扇形統(tǒng)計(jì)圖中D廠家對(duì)應(yīng)的圓心角為;
(2)抽查C廠家的合格零件為 件,并將圖1補(bǔ)充完整;
(3)通過計(jì)算說明合格率排在前兩名的是哪兩個(gè)廠家;
(4)若要從A、B、C、D四個(gè)廠家中,隨機(jī)抽取兩個(gè)廠家參加德國工業(yè)產(chǎn)品博覽會(huì),請(qǐng)用“列表法”或“畫樹形圖”的方法求出(3)中兩個(gè)廠家同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,直線y=﹣x+3與拋物線y=ax2+x+c相交于A,B兩點(diǎn),其中點(diǎn)A在x軸上,點(diǎn)B在y軸上.

(1)求拋物線的解析式;
(2)在拋物線上存在一點(diǎn)M,使△MAB是以AB為直角邊的直角三角形,求點(diǎn)M的坐標(biāo);
(3)如圖2,點(diǎn)E為線段AB上一點(diǎn),BE=2,以BE為腰作等腰Rt△BDE,使它與△AOB在直線AB的同側(cè),∠BED=90°,△BDE沿著BA方向以每秒一個(gè)單位的速度運(yùn)動(dòng),當(dāng)點(diǎn)B與A重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,△BDE與△AOB重疊部分的面積為S,直接寫出S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校以“我最喜愛的體育運(yùn)動(dòng)”為主題對(duì)全校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,調(diào)查的運(yùn)動(dòng)項(xiàng)目有:籃球、羽毛球、乒乓球、跳繩及其它項(xiàng)目(每位同學(xué)僅選一項(xiàng)).根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖:

運(yùn)動(dòng)項(xiàng)目

頻數(shù)(人數(shù))

頻率

籃球

30

0.25

羽毛球

m

0.20

乒乓球

36

n

跳繩

18

0.15

其它

12

0.10

請(qǐng)根據(jù)以上圖表信息解答下列問題:
(1)頻數(shù)分布表中的m= , n=;
(2)在扇形統(tǒng)計(jì)圖中,“乒乓球”所在的扇形的圓心角的度數(shù)為 °;
(3)從選擇“籃球”選項(xiàng)的30名學(xué)生中,隨機(jī)抽取3名學(xué)生作為代表進(jìn)行投籃測(cè)試,則其中某位學(xué)生被選中的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,線段AB的兩個(gè)端點(diǎn)是A(﹣5,1),B(﹣2,3),線段CD的兩個(gè)端點(diǎn)是C(﹣5,﹣1),D(﹣2,﹣3).
(1)線段AB與線段CD關(guān)于直線對(duì)稱,則對(duì)稱軸是;
(2)平移線段AB得到線段A1B1 , 若點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)為(1,2),畫出平移后的線段A1B1 , 并寫出點(diǎn)B1的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對(duì)角線的交點(diǎn)處,∠QPN=α,將∠QPN繞點(diǎn)P旋轉(zhuǎn),旋轉(zhuǎn)過程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C,D不重合).

(1)如圖①,當(dāng)α=90°時(shí),DE,DF,AD之間滿足的數(shù)量關(guān)系是_____;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)镈E+DF=AD,請(qǐng)給出證明;
(3)在(2)的條件下,若旋轉(zhuǎn)過程中∠QPN的邊PQ與射線AD交于點(diǎn)E,其他條件不變,探究在整個(gè)運(yùn)動(dòng)變化過程中,DE,DF,AD之間滿足的數(shù)量關(guān)系,直接寫出結(jié)論,不用加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富學(xué)生的體育生活,學(xué)校準(zhǔn)備購進(jìn)一些籃球和足球,已知用900元購買籃球的個(gè)數(shù)比購買足球的個(gè)數(shù)少1個(gè),足球的單價(jià)為籃球單價(jià)的0.9倍.
(1)求籃球、足球的單價(jià)分別為多少元?
(2)如果計(jì)劃用5000元購買籃球、足球共52個(gè),那么至少要購買多少個(gè)足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線x2 =1的右支上一點(diǎn)P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點(diǎn)分別為M,N,則|PM|2﹣|PN|2的最小值為(
A.10
B.13
C.16
D.19

查看答案和解析>>

同步練習(xí)冊(cè)答案