【題目】求兩個(gè)正整數(shù)的最大公約數(shù)是常見的數(shù)學(xué)問題,中國古代數(shù)學(xué)專著《九章算術(shù)》中便記載了求兩個(gè)正整數(shù)最大公約數(shù)的一種方法﹣﹣更相減損術(shù),術(shù)曰:“可半者半之,不可半者,副置分母、子之?dāng)?shù),以少成多,更相減損,求其等也.以等數(shù)約之”,意思是說,要求兩個(gè)正整數(shù)的最大公約數(shù),先用較大的數(shù)減去較小的數(shù),得到差,然后用減數(shù)與差中的較大數(shù)減去較小數(shù),以此類推,當(dāng)減數(shù)與差相等時(shí),此時(shí)的差(或減數(shù))即為這兩個(gè)正整數(shù)的最大公約數(shù).
例如:求91與56的最大公約數(shù)
解:
請(qǐng)用以上方法解決下列問題:
(1)求108與45的最大公約數(shù);
(2)求三個(gè)數(shù)78、104、143的最大公約數(shù).
【答案】(1)9;(2)13.
【解析】
試題分析:(1)根據(jù)題目,首先弄懂題意,然后根據(jù)例子寫出答案即可;
(2)可以先求出104與78的最大公約數(shù)為 26,再利用輾轉(zhuǎn)相除法,我們可以求出26 與 143的最大公約數(shù)為13,進(jìn)而得到答案.
試題解析:(1)108﹣45=63,63﹣45=18,27﹣18=9,18﹣9=9,所以108與45的最大公約數(shù)是9;
(2)先求104與78的最大公約數(shù),104﹣78=26,78﹣26=52,52﹣26=26,所以104與78的最大公約數(shù)是26;
再求26與143的最大公約數(shù),143﹣26=117,117﹣26=91,91﹣26=65,65﹣26=39,39﹣26=13,26﹣13=13,所以,26與143的最大公約數(shù)是13,∴78、104、143的最大公約數(shù)是13.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你會(huì)對(duì)多項(xiàng)式(x2+5x+2)(x2+5x+3)﹣12分解因式嗎?對(duì)結(jié)構(gòu)較復(fù)雜的多項(xiàng)式,若把其中某些部分看成一個(gè)整體,用新字母代替(即換元),能使復(fù)雜的問題簡(jiǎn)單化、明朗化.從換元的個(gè)數(shù)看,有一元代換、二元代換等.
對(duì)于(x2+5x+2)(x2+5x+3)﹣12.
解法一:設(shè)x2+5x=y,
則原式=(y+2)(y+3)﹣12=y2+5y﹣6=(y+6)(y﹣1)
=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).
解法二:設(shè)x2+5x+2=y,
則原式=y(y+1)﹣12=y2+y﹣12=(y+4)(y﹣3)
=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).
解法三:設(shè)x2+2=m,5x=n,
則原式=(m+n)(m+n+1)﹣12=(m+n)2+(m+n)﹣12=(m+n+4)(m+n﹣3)
=(x2+5x+6)(x2+5x﹣1)=(x+2)(x+3)(x2+5x﹣1).
按照上面介紹的方法對(duì)下列多項(xiàng)式分解因式:
(1)(x2+x﹣4)(x2+x+3)+10;
(2)(x+1)(x+2)(x+3)(x+6)+x2;
(3)(x+y﹣2xy)(x+y﹣2)+(xy﹣1)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類推,則a2018的值為( 。
A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種健身球,已知這種健身球的成本價(jià)為每個(gè)20元,市場(chǎng)調(diào)查發(fā)現(xiàn),該種健身球每天的銷售量y(個(gè))與銷售單價(jià)x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種健身球銷售單價(jià)定為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)如果物價(jià)部門規(guī)定這種健身球的銷售單價(jià)不高于28元,該商店銷售這種健身球每天要獲得150元的銷售利潤(rùn),銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=40°,∠C=80°,AD是BC邊上的高,AE平分∠BAC.
(1)求∠BAE的度數(shù);(2)求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
我們知道的幾何意義是在數(shù)軸上數(shù)對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離,即,也就是說表示在數(shù)軸上數(shù)與數(shù)對(duì)應(yīng)的點(diǎn)之間的距離,這個(gè)結(jié)論可以推廣為表示數(shù)軸上與對(duì)應(yīng)點(diǎn)之間的距離.
例1:已知,求的值.
解:容易看出,在數(shù)軸上與原點(diǎn)距離為的點(diǎn)的對(duì)應(yīng)數(shù)為和,即的值為和.
例2:已知,求的值.
解:在數(shù)軸上與的距離為的點(diǎn)的對(duì)應(yīng)數(shù)為和,即的值為和.
仿照閱讀材料的解法,求下列各式中的值.
(1)
(2)
(3)由以上探索猜想:對(duì)于任何有理數(shù)是否有最小值?如果有,寫出最小值;如果沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,給正五邊形的頂點(diǎn)依次編號(hào)為.若從某一頂點(diǎn)開始,沿正五邊形的邊順時(shí)針行走,頂點(diǎn)編號(hào)的數(shù)字是幾,就走幾個(gè)邊長(zhǎng),則稱這種走法為一次“移位”.
如:小宇同學(xué)從編號(hào)為的頂點(diǎn)開始,他應(yīng)走個(gè)邊長(zhǎng),即從為第一次“移位”,這時(shí)他到達(dá)編號(hào)為的頂點(diǎn);然后從為第二次“移位”,....若小宇同學(xué)從編號(hào)為的頂點(diǎn)開始,則第九十九次“移位”后他所處頂點(diǎn)的編號(hào)是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓⊙O中,將弧AB沿弦AB折疊,使弧AB恰好經(jīng)過圓心O,點(diǎn)P是優(yōu)弧AMB上一點(diǎn),則∠APB的度數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,則下列結(jié)論不正確的是
A. BF=DF B. ∠1=∠EFD C. BF>EF D. FD∥BC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com