已知:在△ABC中,以AC邊為直徑的⊙O交BC于點D,在劣弧上取一點E使∠EBC=∠DEC,延長BE依次交AC于點G,交⊙O于H.
(1)求證:AC丄BH;
(2)若∠ABC=45°,⊙O的直徑等于10,BD=8,求CE的長.

【答案】分析:(1)連接AD,由圓周角定理即可得出∠DAC=∠DEC,∠ADC=90°,再根據(jù)直角三角形的性質(zhì)即可得出結(jié)論;
(2)由∠BDA=180°-∠ADC=90°,∠ABC=45°可求出∠BAD=45°,利用勾股定理即可得出DC的長,進(jìn)而求出BC的長,由已知的一對角線段和公共角,根據(jù)兩對對應(yīng)角相等的兩三角形相似可得三角形BCE與三角形EDC相似,由相似得比例即可求出CE的長.
解答:(1)證明:連接AD,
∵∠DAC=∠DEC,∠EBC=∠DEC,
∴∠DAC=∠EBC,
∵AC是⊙O的直徑,
∴∠ADC=90°,
∴∠DCA+∠DAC=90°,
∴∠EBC+∠DCA=90°,
∴∠BGC=180°-(∠EBC+∠DCA)=180°-90°=90°,
∴AC⊥BH;

(2)解:∵∠BDA=180°-∠ADC=90°,∠ABC=45°,
∴∠BAD=45°,
∴BD=AD,
∵BD=8,∴AD=8,
在直角三角形ADC中,AD=8,AC=10,
根據(jù)勾股定理得:DC=6,則BC=BD+DC=14,
∵∠EBC=∠DEC,∠BCE=∠ECD,
∴△BCE∽△ECD,
,即CE2=BC•CD=14×6=84,
∴CE==2
點評:本題考查的是圓周角定理,相似三角形的判定與性質(zhì)及勾股定理,根據(jù)題意作出輔助線是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、已知:在△ABC中AB=AC,點D在CB的延長線上.
求證:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(1)化簡:(a-
1
a
)÷
a2-2a+1
a

(2)已知:在△ABC中,AB=AC.
①設(shè)△ABC的周長為7,BC=y,AB=x(2≤x≤3).寫出y關(guān)于x的函數(shù)關(guān)系式;
②如圖,點D是線段BC上一點,連接AD,若∠B=∠BAD,求證:△BAC∽△BDA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,已知,在△ABC中,∠ABC和∠ACB的平分線交于點M,ME∥AB交BC于點E,MF∥AC交BC于點F.求證:△MEF的周長等于BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、已知,在△ABC中,AB=AC=x,BC=6,則腰長x的取值范圍是
x>3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足為點E.∠B=38°,∠C=70°.
①求∠DAE的度數(shù);
②試寫出∠DAE與∠B、∠C之間的一般等量關(guān)系式(只寫結(jié)論)

查看答案和解析>>

同步練習(xí)冊答案