【題目】已知點(diǎn)C為線段AB上一點(diǎn),分別以AC、BC為邊在線段AB同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點(diǎn)F

(1)如圖1,若∠ACD=60゜,則∠AFB= ;

(2)如圖2,若∠ACD=α,則∠AFB= (用含α的式子表示);

(3)將圖2中的△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),如圖3.試探究∠AFB與α的數(shù)量關(guān)系,并予以證明.

【答案】(1)120°;(2) 180°―α;(3)見(jiàn)解析

【解析】試題分析:(1)求出ACE=∠DCB,證ACE≌△DCB,推出CAE=∠CDB,求出AFB=∠CDA+∠DAC,根據(jù)三角形內(nèi)角和定理求出即可;

2)求出ACE=∠DCBACE≌△DCB,推出CAE=∠CDB,求出AFB=∠CDA+∠DAC,根據(jù)三角形內(nèi)角和定理求出即可;

3)求出ACE=∠DCBACE≌△DCB,推出CAE=∠CDB,求出AFB=∠CEB+∠CBE根據(jù)三角形內(nèi)角和定理求出即可

試題解析:解:(1∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在ACEDCB

ACEDCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE

=∠CDA+∠DAE+∠BAE

=∠CDA+∠DAC

=180°―60°

=120°

2)解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在ACEDCB

ACEDCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE

=∠CDA+∠DAE+∠BAE

=∠CDA+∠DAC

=180°―∠ACD

=180°―α;

3AFB=180-α,證明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在ACEDCB

ACEDCB,∴∠AEC=∠DBC,∴∠AFB=∠AEC+∠CEB+∠EBD

=∠DBC+∠CEB+∠EBC

=∠CEB+∠EBC

=180°-∠ECB

=180°-α

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,ABC的頂點(diǎn)坐標(biāo)是A(﹣7,1),B(1,1),C(1,7).線段DE的端點(diǎn)坐標(biāo)是D(7,﹣1),E(﹣1,﹣7).

(1)試說(shuō)明如何平移線段AC,使其與線段ED重合;

(2)將ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn),使AC的對(duì)應(yīng)邊為DE,請(qǐng)直接寫出點(diǎn)B的對(duì)應(yīng)點(diǎn)F的坐標(biāo);

(3)畫出(2)中的DEF,并和ABC同時(shí)繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P,Q都是直線l外的點(diǎn),下列說(shuō)法正確的是(  )
A.連接PQ,則PQ一定與直線l垂直
B.連接PQ,則PQ一定與直線l平行
C.連接PQ,則PQ一定與直線l相交
D.過(guò)點(diǎn)P只能畫一條直線與直線l平行

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某建筑工程隊(duì)利用一面墻(墻的長(zhǎng)度不限),用40米長(zhǎng)的籬笆圍成一個(gè)長(zhǎng)方形的倉(cāng)庫(kù).

(1)求長(zhǎng)方形的面積是150平方米,求出長(zhǎng)方形兩鄰邊的長(zhǎng);

(2)能否圍成面積220平方米的長(zhǎng)方形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若∠α的補(bǔ)角為29°18′,則∠α的大小為( 。

A. 150°42′ B. 60°42′ C. 150°82′ D. 60°82′

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王購(gòu)買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,地面結(jié)構(gòu)如圖所示.根據(jù)圖中的數(shù)據(jù)(單位:m),解答下列問(wèn)題:

(1)用含x的式子表示廚房的面積m2 , 臥室的面積m2
(2)此經(jīng)濟(jì)適用房的總面積為m2
(3)已知廚房面積比衛(wèi)生間面積多2m2 , 且鋪1m2地磚的平均費(fèi)用為80元,那么鋪地磚的總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次射擊比賽中,某運(yùn)動(dòng)員前7次射擊共中62環(huán),如果他要打破89環(huán)(10次射擊)的記錄,那么第8次射擊他至少要打出______環(huán)的成績(jī)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)y2x+1的圖象向左平移2個(gè)單位所得圖象的函數(shù)解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,回答問(wèn)題:

材料

題1:經(jīng)過(guò)某十字路口的汽車,可能直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性的大小相同,求三輛汽車經(jīng)過(guò)這個(gè)十字路口時(shí),至少要兩輛車向左轉(zhuǎn)的概率

題2:有兩把不同的鎖和三把鑰匙,其中兩把鑰匙分別能打開(kāi)這兩把鎖(一把鑰匙只能開(kāi)一把鎖),第三把鑰匙不能打開(kāi)這兩把鎖.隨機(jī)取出一把鑰匙開(kāi)任意一把鎖,一次打開(kāi)鎖的概率是多少?

我們可以用“袋中摸球”的試驗(yàn)來(lái)模擬題1:在口袋中放三個(gè)不同顏色的小球,紅球表示直行,綠球表示向左轉(zhuǎn),黑球表示向右轉(zhuǎn),三輛汽車經(jīng)過(guò)路口,相當(dāng)于從三個(gè)這樣的口袋中各隨機(jī)摸出一球.

問(wèn)題:

(1)事件“至少有兩輛車向左轉(zhuǎn)”相當(dāng)于“袋中摸球”的試驗(yàn)中的什么事件?

(2)設(shè)計(jì)一個(gè)“袋中摸球”的試驗(yàn)?zāi)M題2,請(qǐng)簡(jiǎn)要說(shuō)明你的方案

(3)請(qǐng)直接寫出題2的結(jié)果.

查看答案和解析>>

同步練習(xí)冊(cè)答案