【題目】在湖心有一座小塔,小華想知道這座的高塔的高度,于是他在岸邊架起了測角儀,他測量的數(shù)據(jù)如下(如圖所示):測量儀位置距水平面的距離為1.5米(即),測得塔頂的仰角為(其中),測得塔頂在水中倒影(即)的俯角為,請你根據(jù)上述數(shù)據(jù)求出這座塔的高度(即).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是AD邊上一點(diǎn),AE:ED=1:2,連接AC、BE交于點(diǎn)F.若S△AEF=1,則S四邊形CDEF=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與直線y=x+3分別相交于A,B兩點(diǎn),且此拋物線與x軸的一個(gè)交點(diǎn)為C,連接AC,BC.已知A(0,3),C(﹣3,0).
(1)求拋物線的解析式;
(2)在拋物線對稱軸l上找一點(diǎn)M,使|MB﹣MC|的值最大,并求出這個(gè)最大值;
(3)點(diǎn)P為y軸右側(cè)拋物線上一動(dòng)點(diǎn),連接PA,過點(diǎn)P作PQ⊥PA交y軸于點(diǎn)Q,問:是否存在點(diǎn)P使得以A,P,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:
(1)函數(shù)的自變量x的取值范圍是 ;
(2)下表是x與y的幾組對應(yīng)值.
... | 1 | 2 | 3 | ... | ||||||||
... | m | ... |
求m的值;
(3)如圖,在平面直角坐標(biāo)系中,已描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1,).結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(寫兩條即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)D,過點(diǎn)D作DE⊥AC于點(diǎn)E,延長CA交⊙O于點(diǎn)F.
(1)求證:DE是⊙O切線;
(2)若AB=10cm,DE+EA=6cm,求AF的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y=(x>0)和一次函數(shù)y=mx+n的圖象過格點(diǎn)(網(wǎng)格線的交點(diǎn))B、P.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)觀察圖象,直接寫出一次函數(shù)值大于反比例函數(shù)值時(shí)x的取值范圍是: .
(3)在圖中用直尺和2B鉛筆畫出兩個(gè)矩形(不寫畫法),要求每個(gè)矩形均需滿足下列兩個(gè)條件:
①四個(gè)頂點(diǎn)均在格點(diǎn)上,且其中兩個(gè)頂點(diǎn)分別是點(diǎn)O,點(diǎn)P;
②矩形的面積等于k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是坐標(biāo)原點(diǎn),A、B的坐標(biāo)分別為(3,1)、(2,﹣1).
(1)在y軸的左側(cè)以O為位似中心作△OAB的位似三角形OCD,使新圖與原圖的相似比為2:1;
(2)分別寫出A,B的對應(yīng)點(diǎn)C、D的坐標(biāo);
(3)求△OCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進(jìn)價(jià)每個(gè)為10元,當(dāng)售價(jià)每個(gè)為12元時(shí),銷售量為180個(gè),若售價(jià)每提高1元,銷售量就會(huì)減少10個(gè),請回答以下問題:
(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷售量y(個(gè))與售價(jià)x(元)之間的函數(shù)關(guān)系(12≤x≤30);
(2)王大伯為了讓利給顧客,并同時(shí)獲得840元利潤,售價(jià)應(yīng)定為多少?
(3)當(dāng)售價(jià)定為多少時(shí),王大伯獲得利潤W最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(-4,0),B(0,-4),C(2,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為,△AMB的面積為S.求S關(guān)于的函數(shù)關(guān)系式,并求出S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com