已知一次函數(shù)y=kx+b的圖象如圖所示,則k,b的符號是    (      )
A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0
D.

試題分析:由一次函數(shù)y=kx+b的圖象經(jīng)過二、三、四象限,
又有k<0時,直線必經(jīng)過二、四象限,故知k<0,
再由圖象過三、四象限,即直線與y軸負半軸相交,所以b<0.
故選D.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

下表中,y是x的一次函數(shù).
x
2
1
2
 
5
y
6
3
 
12
15
 
(1)求該函數(shù)的表達式,并補全表格;
(2)已知該函數(shù)圖象上一點M(1,-3)也在反比例函數(shù)圖象上,求這兩個函數(shù)圖象的另一交點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

設p,q都是實數(shù),且.我們規(guī)定:滿足不等式的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為.對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當時,有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此函數(shù)的解析式;
(3)若實數(shù)c,d滿足,且,當二次函數(shù)是閉區(qū)間上的“閉函數(shù)”時,求c,d的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

點A(3,)和點B(-2,)都在直線y=-4x+1上,則,的大小關系是(     )
(選填“>”“=”“<”)。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在購買某場足球賽門票時,設購買門票數(shù)為x(張),總費用為y(元).現(xiàn)有兩種購買方案:
方案一:若單位贊助廣告費10000元,則該單位所購門票的價格為每張60元;
(總費用=廣告贊助費+門票費)
方案二:購買門票方式如圖所示.
解答下列問題:
(1)方案一中,y與x的函數(shù)關系式為     
方案二中,當0≤x≤100時,y與x的函數(shù)關系式為     
當x>100時,y與x的函數(shù)關系式為        ;
(2)如果購買本場足球賽門票超過100張,你將選擇哪一種方案,使總費用最。空堈f明理由;
(3)甲、乙兩單位分別采用方案一、方案二購買本場足球賽門票共700張,花去總費用計58000元,求甲、乙兩單位各購買門票多少張.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

現(xiàn)計劃把甲種貨物1240噸和乙種貨物880噸用一列貨車運往某地,已知這列貨車掛有A、B兩種不同規(guī)格的貨車車廂共40節(jié),使用A型車廂每節(jié)費用為6000元,使用B型車廂每節(jié)費用為8000元。
(1)設運送這批貨物的總費用為萬元,這列貨車掛A型車廂節(jié),試寫出之間的函數(shù)關系式;
(2)如果每節(jié)A型車廂最多可裝甲種貨物35噸和乙種貨物15噸,每節(jié)B型車廂最多可裝甲種貨物25噸和乙種貨物35噸,裝貨時按此要求安排A、B兩種車廂的節(jié)數(shù),那么共有哪幾種安排車廂的方案?
(3)在上述方案中,哪種方案運費最省,最少運費為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在函數(shù)y=-3x的圖象上取一點P,過P點作PA⊥x軸,已知P點的橫坐標為-2,求△POA的面積(O為坐標原點).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若點(m,n)在函數(shù)y=2x+1的圖象上,則2m-n的值是(    )
A.2B.-2C.8D.-1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,矩形ABCD中,AB=3,BC=4,動點P從A點出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關于x的函數(shù)圖象大致是(  )

       
         

查看答案和解析>>

同步練習冊答案