【題目】在四邊形ABCD中,ADBC,EAB邊上一點,BCE=15°,EFADDC于點F.

(1)依題意補全圖形,求∠FEC的度數(shù);

(2)若∠A=140°,求∠AEC的度數(shù).

【答案】(1)補全的圖形見解析,15°;(2)55°.

【解析】1)按題目要求進(jìn)行補全圖形可得EFBC,從而可求∠FEC=15°;

(2)根據(jù)EFAD得∠AEF+A=180°;又∠A=140°,故可求∠AEF,從而可求出結(jié)論.

(1)補全的圖形如圖所示.

ADBC,EFAD,

EFBC.

∴∠FEC=BCE.

∵∠BCE=15°,

∴∠FEC=15°.

(2)EFAD,

∴∠AEF+A=180°.

∵∠A=140°,

∴∠AEF=40°.

∴∠AEC=55°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】云南地區(qū)地震發(fā)生后,市政府籌集了必需物資120噸打算運往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設(shè)每輛車均滿載)

(1)若全部物資都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?

(2)為了節(jié)省運費,市政府打算用甲、乙、丙三種車型同時參與運送,已知它們的總輛數(shù)為14輛,你能求出這三種車型分別有多少輛嗎?此時的運費又是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)-5,1,-3,5,-2中任取三個數(shù)相乘,其中最大的積是a,最小的積是b.

(1)a,b的值;

(2)|x+a|+|y-b|=0,求(x+y)÷(x-y)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c﹣m=0有兩個不相等的實數(shù)根,下列結(jié)論: ①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正確的個數(shù)有(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD繞點C順時針旋轉(zhuǎn)90°得到矩形FGCE,點M、N分別是BDGE的中點,若BC=14,CE=2,則MN的長(  )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標(biāo)系xOy中的點A,給出如下定義:若存在點B(不與點A重合,且直線AB不與坐標(biāo)軸平行或重合),過點A作直線mx軸,過點B作直線ny軸,直線m,n相交于點C.當(dāng)線段AC,BC的長度相等時,稱點B為點A 的等距點,稱三角形ABC的面積為點A的等距面積. 例如:如圖,點A(2,1),點B(5,4),因為AC= BC=3,所以B為點A 的等距點,此時點A的等距面積為.

(1)點A的坐標(biāo)是(0,1),在點B1(-1,0),B2(2,3),B3(-1,-1)中,點A 的等距點為________________.

(2)點A的坐標(biāo)是(-3,1),點A的等距點B在第三象限,

若點B的坐標(biāo)是,求此時點A的等距面積;

若點A的等距面積不小于,求此時點B的橫坐標(biāo)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某城市市民廣場一入口處有五級高度相等的小臺階.已知臺階總高1.5米,為了安全,現(xiàn)要做一個不銹鋼扶手AB及兩根與FG垂直且長為1米的不銹鋼架桿AD和BC(桿子的底端分別為D、C),且∠DAB=66.5°.(參考數(shù)據(jù):cos66.5°≈0.40,sin66.5°≈0.92)
(1)求點D與點C的高度差DH;
(2)求所有不銹鋼材料的總長度(即AD+AB+BC的長,結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C在線段AB上,AC=6cm,MB=10cm,點M、N分別為AC、BC的中點.

(1)求線段BC的長;

(2)求線段MN的長;

(3)若C在線段AB延長線上,且滿足AC﹣BC=b cm,M,N分別是線段AC,BC的中點,你能猜想MN的長度嗎?請寫出你的結(jié)論(不需要說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】O為直線AB上一點,過點O作射線OC,使∠BOC=65°,將一直角三角形的直角三角板的直角頂點放在點O.

1)如圖1,將三角板MON的一邊ON與射線OB重合,則∠MOC=___________

2)如圖2,將三角板MON繞點O逆時針旋轉(zhuǎn)一定角度,此時OC是∠MOB的角平分線,求旋轉(zhuǎn)角∠BON和∠CON的度數(shù);

3)將三角板MON繞點O逆時針旋轉(zhuǎn)至圖3時,∠NOC=AOM,求∠NOB的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案