【題目】如圖1,兩個完全相同的三角形紙片和重合放置,其中,.
(1)操作發(fā)現(xiàn):如圖2,固定,使繞點旋轉,當點恰好落在邊上時,填空:①線段與的位置關系是________;②設的面積為,的面積為,則與的數(shù)量關系是_____.
(2)猜想論證:當繞點旋轉到如圖3所示的位置時,請猜想(1)中與的數(shù)量關系是否仍然成立?若成立,請證明;若不成立,請說明理由.
(3)拓展探究:已知,平分,,,交于點(如圖4).若在射線上存在點,使,請求相應的的長.
【答案】(1)DE∥AC;S1=S2;(2)成立,證明見解析;(3)BF的長為3或6.
【解析】
(1)①根據(jù)旋轉的性質可得AC=CD,然后求出△ACD是等邊三角形,根據(jù)等邊三角形的性質可得∠ACD=60°,然后根據(jù)內(nèi)錯角相等,兩直線平行解答;
②根據(jù)等邊三角形的性質可得AC=AD,再根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC=AB,然后求出AC=BD,再根據(jù)等邊三角形的性質求出點C到AB的距離等于點D到AC的距離,然后根據(jù)等底等高的三角形的面積相等解答;
(2)根據(jù)旋轉的性質可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角邊”證明△ACN和△DCM全等,根據(jù)全等三角形對應邊相等可得AN=DM,然后利用等底等高的三角形的面積相等證明;
(3)過點D作DF1∥BE,求出四邊形BEDF1是菱形,根據(jù)菱形的對邊相等可得BE=DF1,然后根據(jù)等底等高的三角形的面積相等可知點F1為所求的點,過點D作DF2⊥BD,求出∠F1DF2=60°,從而得到△DF1F2是等邊三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“邊角邊”證明△CDF1和△CDF2全等,根據(jù)全等三角形的面積相等可得點F2也是所求的點,然后勾股定理求出EG的長,即可得解
(1)①∵△DEC繞點C旋轉點D恰好落在AB邊上,
∴AC=CD,
∵∠BAC=90°-∠B=90°-30°=60°,
∴△ACD是等邊三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;
故答案為:DE∥AC;
②∵∠B=30°,∠C=90°,
∴CD=AC=AB,
∴BD=AD=AC,
根據(jù)等邊三角形的性質,△ACD的邊AC、AD上的高相等,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S2;
故答案為:S1=S2;
(2)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N
,
∵△DEC是由△ABC繞點C旋轉得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,
,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),
即S1=S2;
(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此時S△DCF1=S△BDE;
過點D作DF2⊥BD,
∵∠ABC=60°,F1D∥BE,
∴∠F2F1D=∠ABC=60°,
∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,
∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等邊三角形,
∴DF1=DF2,過點D作DG⊥BC于G,
∵BD=CD,∠ABC=60°,點D是角平分線上一點,
∴∠DBC=∠DCB=×60°=30°,BG=BC= ,
∴BD=3
∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF2=360°-150°-60°=150°,
∴∠CDF1=∠CDF2,
∵在△CDF1和△CDF2中,
,
∴△CDF1≌△CDF2(SAS),
∴點F2也是所求的點,
∵∠ABC=60°,點D是角平分線上一點,DE∥AB,
∴∠DBC=∠BDE=∠ABD=×60°=30°,
∴∠CDE=360°-∠CDF2-∠F2DB-DBE=360°-150°-90°-30°=90°,
∴∠CDG=90°-∠DCG=60°,
又∵BD=CD=3,
∴DG= ,
設EG為x,則DE=2x,
,
解得x=1.5,
∴BE=BG-EG=4.5-1.5 =3,
∴BF1=3,BF2=BF1+F1F2=3+3=6,
故BF的長為3或6.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經(jīng)過點C,且∠ACE+∠AFO=180°.
(1)求證:EM是⊙O的切線;
(2)若∠A=∠E,BC=,求陰影部分的面積.(結果保留和根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,⊙O經(jīng)過A、B兩點,且交AC于點D,連接BD,∠DBC=∠BAC.
(1)證明BC與⊙O相切;
(2)若⊙O的半徑為6,∠BAC=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OF⊥AB,交AC于點F,點E在AB的延長線上,射線EM經(jīng)過點C,且∠ACE+∠AFO=180°.
(1)求證:EM是⊙O的切線;
(2)若∠A=∠E,BC=,求陰影部分的面積.(結果保留和根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E、F分別在平行四邊形ABCD邊BC和AD上(E、F都不與兩端點重合),連結AE、DE、BF、CF,其中AE和BF交于點G,DE和CF交于點H.令,.若,則圖中有_______個平行四邊形(不添加別的輔助線);若,且四邊形ABCD的面積為28,則四邊形FGEH的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,,,,,點P從點B出發(fā),沿線段BA,向點A以的速度勻速運動;點Q從點D出發(fā),沿線段DC向點C以的速度勻速運動,已知兩點同時出發(fā),當一個點到達終點時,另一點也停止運動,設運動時間為.
(1)連結P、Q兩點,則線段PQ長的取值范圍是________;
(2)當cm時,求t的值;
(3)若在線段CD上有一點E,cm,連結AC和PE.請問是否存在某一時刻使得AC平分PE?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=2x2+bx+c與直線y=﹣1只有一個公共點,且經(jīng)過A(m﹣1,n)和B(m+3,n),過點A,B分別作x軸的垂線,垂足記為M,N,則四邊形AMNB的周長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個說法:
①,②,③,④.
其中說法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com