【題目】如圖,在正方形ABCD中,點MCD邊上,點N在正方形ABCD外部,且滿足∠CMN=90°,CM=MN.連接AN,CN,取AN的中點E,連接BE,AC,交于F點.

(1) ①依題意補全圖形;

②求證:BEAC.

(2)請?zhí)骄烤段BE,AD,CN所滿足的等量關系,并證明你的結論.

(3)設AB=1,若點M沿著線段CD從點C運動到點D,則在該運動過程中,線段EN所掃過的面積為______________(直接寫出答案).

【答案】(1)①補圖見解析;②證明見解析;(2)2BE=AD+CN,證明見解析;(3).

【解析】(1)①依照題意補全圖形即可;②連接CE,由正方形以及等腰直角三角形的性質(zhì)可得出∠ACD=MCN=45°,從而得出∠ACN=90°,再根據(jù)直角三角形的性質(zhì)以及點EAN的中點即可得出AE=CE,由此即可得出B、E在線段AC的垂直平分線上,由此即可證得BEAC;

(2)BE=AD+CN.根據(jù)正方形的性質(zhì)可得出BF=AD,再結合三角形的中位線性質(zhì)可得出EF=CN,由線段間的關系即可證出結論;

(3)找出EN所掃過的圖形為四邊形DFCN.根據(jù)正方形以及等腰直角三角形的性質(zhì)可得出BDCN,由此得出四邊形DFCN為梯形,再由AB=1,可算出線段CF、DF、CN的長度,利用梯形的面積公式即可得出結論.

1)①依題意補全圖形,如圖1所示.

②證明:連接CE,如圖2所示.

∵四邊形ABCD是正方形,

∴∠BCD=90°,AB=BC,

∴∠ACB=ACD=BCD=45°,

∵∠CMN=90°,CM=MN,

∴∠MCN=45°,

∴∠ACN=ACD+MCN=90°.

∵在RtACN中,點EAN中點,

AE=CE=AN.

AE=CE,AB=CB,

∴點B,EAC的垂直平分線上,

BE垂直平分AC,

BEAC.

(2)BE=AD+CN.

證明:∵AB=BC,ABE=CBE,

AF=FC.

∵點EAN中點,

AE=EN,

FEACN的中位線.

FE=CN.

BEAC,

∴∠BFC=90°,

∴∠FBC+FCB=90°.

∵∠FCB=45°,

∴∠FBC=45°,

∴∠FCB=FBC,

BF=CF.

RtBCF中,BF2+CF2=BC2,

BF=BC.

∵四邊形ABCD是正方形,

BC=AD,

BF=AD.

BE=BF+FE,

BE=AD+CN.

(3)在點M沿著線段CD從點C運動到點D的過程中,線段EN所掃過的圖形為四邊形DFCN.

∵∠BDC=45°,DCN=45°,

BDCN,

∴四邊形DFCN為梯形.

AB=1,

CF=DF=BD=,CN=CD=

S梯形DFCN=(DF+CN)CF=+)×=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】由于受到手機更新?lián)Q代的影響,某店經(jīng)銷的甲型號手機今年的售價比去年每臺降價500元.如果賣出相同數(shù)量的手機,那么去年銷售額為8萬元,今年銷售額只有6萬元.

(1)今年甲型號手機每臺售價為多少元?

(2)為了提高利潤,該店計劃購進乙型號手機銷售,已知甲型號手機每臺進價為1000元,乙型號手機每臺進價為800元,預計用不多于1.84萬元且不少于1.76萬元的資金購進這兩種手機共20臺,請問有幾種進貨方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是直線AB上一點,OD平分∠BOC,COE=90°.

(1)若∠AOC=48°,求∠DOE的度數(shù).

(2)若∠AOC=α,則∠DOE=   (用含α的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,AB=AC=10cm,BC=8cm,點DAB的中點.如果點P在線段BC上以3cm/s的速度由點BC點運動,同時,點Q在線段CA上由點CA點運動.

1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,BPDCQP是否全等,請說明理由.

2)若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使BPDCQP全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)2﹣13+8;

(2)2+(﹣6)÷2×;

(3)5×22﹣3÷(﹣);

(4)﹣42+(﹣9)×[(﹣2)3+]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB為⊙O直徑,BC為⊙O切線,切點為B,CO平行于弦AD,作直線DC.
①求證:DC為⊙O切線;
②若ADOC=8,求⊙O半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某研究機構經(jīng)過抽樣調(diào)查,發(fā)現(xiàn)當?shù)?/span>1500個老年人的養(yǎng)老模式主要有A,B,C,D,E五種,統(tǒng)計結果如圖,那么下列說法不正確的是( 。

A. 選擇A型養(yǎng)老的頻率是

B. 可以估計當?shù)?/span>30000個老年人中有8000人選擇C型養(yǎng)老

C. 樣本容量是1500

D. 總體是當?shù)?/span>1500個老年人的養(yǎng)老模式

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一輛慢車與一輛快車沿相同路線從地到地所行的路程與時間之間的函數(shù)圖象,已知慢車比快車早出發(fā)小時,則兩地的距離為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M沿路線O→A→C運動.

(1)求直線AB的解析式.

(2)求OAC的面積.

(3)當OMC的面積是OAC的面積的時,求出這時點M的坐標.

查看答案和解析>>

同步練習冊答案