【題目】在Rt△ABC中,∠C=90°,∠A、∠B、∠C的對邊分別為a、b、c.
(1)若a∶b=3∶4,c=75cm,求a、b;
(2)若a∶c=15∶17,b=24,求△ABC的面積;
(3)若c-a=4,b=16,求a、c;
(4)若∠A=30°,c=24,求c邊上的高hc;
(5)若a、b、c為連續(xù)整數(shù),求a+b+c.
【答案】(1)a=45cm.b=60cm; (2)540; (3)a=30,c=34;(4)6; (5)12.
【解析】試題分析:(1)設a=3x,b=4x,利用勾股定理,可得出的值,繼而得出答案;
(2)設 利用勾股定理,可得出的值,繼而得出答案;
(3)根據(jù)勾股定理可求出聯(lián)立可得出
(4)求出 根據(jù)直角三角形面積的兩種表示形式可得出高;
(5)設 利用勾股定理解出的值即可.
試題解析:(1)設a=3x,b=4x,則
解得:x=15,故可得:a=45cm,b=60cm;
(2)設a=15x,c=17x,則
解得:x=3,則a=45,故△ABC的面積
(3) 即
∵ca=4,
則
解得:
即a=30,c=34;
(4)
則
解得:
(5)設a=x1,b=x,c=x+1,
則可得:
解得:x=4,即a=3,b=4,c=5,
故a+b+c=12.
科目:初中數(shù)學 來源: 題型:
【題目】下面是“經(jīng)過已知直線外一點作這條直線的垂線”的尺規(guī)作圖過程:
已知:直線l和l外一點P.(如圖1)
求作:直線l的垂線,使它經(jīng)過點P.
作法:如圖2
(1)在直線l上任取兩點A,B;
(2)分別以點A,B為圓心,AP,BP長為半徑作弧,兩弧相交于點Q;
(3)作直線PQ.
所以直線PQ就是所求的垂線.
請回答:該作圖的依據(jù)是_________________________________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x交于A(﹣1,0)、E(3,0)兩點,與y軸交于點B(0,3).
(1)求拋物線的解析式;
(2)設拋物線頂點為D,求四邊形AEDB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的二次函數(shù)y=ax2+bx+c的圖象中,劉星同學觀察得出了下面四條信息:
①b2﹣4ac>0;②c>1;③2a﹣b<0;④a+b+c<0.你認為其中錯誤的有( )
A.2個
B.3個
C.4個
D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如3+2=(1+)2,善于思考的小明進行了以下探索:
設a+b=(m+n)2(其中a、b、m、n均為正整數(shù)),則有a+b=m2+2n2+2mn,
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當a、b、m、n均為正整數(shù)時,若a+b=(m+n)2,用含m、n的式子分別表示a、b,得:a= , b= .
(2)利用所探索的結(jié)論,找一組正整數(shù)a、b、m、n填空: + = ( + )2;(答案不唯一)
(3)若a+4=(m+n)2 ,且a、m、n均為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合題
(1)用適當?shù)姆椒ń夥匠蹋?
①(x﹣2)2=2x﹣4
②x2﹣2x﹣8=0.
(2)先化簡,再求值: ÷( ﹣a+1),其中a是方程x2﹣x=6的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,點D是⊙O上的一點,點C是 的中點,弦CM垂直AB于點F,連接AD,交CF于點P,連接BC,∠DAB=30°.
(1)求∠ABC的度數(shù);
(2)若CM=4 ,求 的長度.(結(jié)果保留π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com