如圖,拋物線與y軸突于A點,過點A的直線y=kx+l與拋物線交于另一點B,過點B作BC⊥x軸,垂足為點C(3,0)

(1)求直線AB的函數(shù)關(guān)系式;
(2)動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,過點產(chǎn)作PN⊥x軸,交直線AB于點M,交拋物線于點N,設(shè)點P移動的時間為t秒,MN的長度為s個單位,求s與t的函數(shù)關(guān)系式,并求出線段MN的最大值;
(3)設(shè)在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當(dāng)t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由.

(1);(2);(3)當(dāng)時,四邊形BCMN為平行四邊形;當(dāng)時,平行四邊形BCMN為菱形

解析試題分析:(1)把x=3代入即可求得B點的坐標(biāo),再把點B的坐標(biāo)代入即可求得直線AB的函數(shù)關(guān)系式;
(2)把x=t分別代入到即可得到點M、N的縱坐標(biāo),從而可以表示出MN的長,再根據(jù)二次函數(shù)的性質(zhì)求解即可;
(3)在四邊形BCMN中,由BC∥MN可知當(dāng)BC=MN時,四邊形BCMN即為平行四邊形,即可求得t的值,由勾股定理求得CM的長,再根據(jù)菱形的性質(zhì)求解即可.
(1)把x=3代入,得
∴B點的坐標(biāo)分別(3,
把點B的坐標(biāo)代入,得,解得
所以;
(2)把x=t分別代入到
得到點M、N的縱坐標(biāo)分別為、
∴MN=-()=
=-
∴MN最大=S最大;
(3)在四邊形BCMN中,∵BC∥MN
∴當(dāng)BC=MN時,四邊形BCMN即為平行四邊形
,得
即當(dāng)時,四邊形BCMN為平行四邊形 
當(dāng)時,PC=2,PM=,由勾股定理求得CM =
此時BC=CM=,平行四邊形BCMN為菱形;
當(dāng)時,PC=1,PM=2,由勾股定理求得CM=
此時BC≠CM,平行四邊形BCMN不是菱形;
所以,當(dāng)時,平行四邊形BCMN為菱形.
考點:二次函數(shù)的綜合題
點評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013年河南省平頂山市中考第二次調(diào)研測試(二模)數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線與y軸突于A點,過點A的直線y=kx+l與拋物線交于另一點B,過點B作BC⊥x軸,垂足為點C(3,0)

(1)求直線AB的函數(shù)關(guān)系式;

(2)動點P在線段OC上從原點出發(fā)以每秒一個單位的速度向C移動,過點產(chǎn)作PN⊥x軸,交直線AB于點M,交拋物線于點N,設(shè)點P移動的時間為t秒,MN的長度為s個單位,求s與t的函數(shù)關(guān)系式,并求出線段MN的最大值;

(3)設(shè)在(2)的條件下(不考慮點P與點O,點C重合的情況),連接CM,BN,當(dāng)t為何值時,四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案