分析 根據(jù)勾股定理可得AB、AC長,然后再利用勾股定理逆定理可得AB2+AC2=BC2,進而可得∠BAC是直角.
解答 解:由勾股定理,得AB=$\sqrt{A{D}^{2}+B{D}^{2}}$=$\sqrt{5}$,AC=$\sqrt{A{D}^{2}+C{D}^{2}}$=$2\sqrt{5}$,
∵BD=1,CD=4,
∴BC=1+4=5,
∵($\sqrt{5}$)2+(2$\sqrt{5}$)2=52,
∴AB2+AC2=BC2,
∴∠BAC是直角.
點評 此題主要考查了勾股定理和勾股定理逆定理,關(guān)鍵是掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | AC=BD | B. | AC∥BD | C. | E為CD中點 | D. | ∠A=∠D |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com