【題目】甲、乙兩名射擊運(yùn)動員中進(jìn)行射擊比賽,兩人在相同條件下各射擊10次,射擊的成績?nèi)鐖D所示.
根據(jù)圖中信息,回答下列問題:
(1)甲的平均數(shù)是___________,乙的中位數(shù)是______________;
(2)分別計算甲、乙成績的方差,并從計算結(jié)果來分析,你認(rèn)為哪位運(yùn)動員的射擊成績更穩(wěn)定?
【答案】(1)8,7.5 ;(2)乙運(yùn)動員的射擊成績更穩(wěn)定.
【解析】
試題分析:(1)求甲的平均數(shù)只要把甲的十次射擊成績加在一起除以10即可;求乙的中位數(shù)先把乙的十次射擊成績按從小到大順序排列,則排在中間兩個數(shù)據(jù)的平均數(shù)就是乙的中位數(shù);(2)先計算出甲,乙的平均數(shù),根據(jù)方差計算公式(各個數(shù)據(jù)與平均數(shù)差的平方和再除以10),即可算出兩位運(yùn)動員的方差,誰的方差小,誰的成績就穩(wěn)定.
試題解析:(1)把甲的十次射擊成績加在一起除以10:甲的平均數(shù)=(6+10+8+9+8+7+8+10+7+7)÷10=8;先把乙的十次射擊成績按從小到大順序排列為7,7,7,7,7,8,9,9,9,10.則排在中間兩個數(shù)據(jù)是7,8.故乙的中位數(shù)是(7+8)÷2=7.5;(2)甲的平均數(shù)是8,乙的平均數(shù)是(7+7+7+7+7+8+9+9+9+10)÷10=8,故,=,,∴乙運(yùn)動員的射擊成績更穩(wěn)定.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,點(diǎn)M,N分別在AB,AD邊上,若AM:MB=AN:ND=1:2,則sin∠MCN=( )
A.
B.
C.
D. ﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將△ABC紙片沿中位線EH折疊,使點(diǎn)A對稱點(diǎn)D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線EF,HG折疊,折疊后的三個三角形拼合形成一個矩形,類似地,對多邊形進(jìn)行折疊,若翻折后的圖形恰能拼合成一個無縫隙、無重疊的矩形,這樣的矩形稱為疊合矩形.
(1)將□ABCD紙片按圖2的方式折疊成一個疊合矩形AEFG,則操作形成的折痕分別是線段_______,_________;S矩形AEFG:S□ABCD=__________.
(2)□ABCD紙片還可以按圖3的方式折疊成一個疊合矩形EFGH,若EF=5,EH=12,求AD的長;
(3)如圖4,四邊形ABCD紙片滿足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把該紙片折疊,得到疊合正方形,請你幫助畫出一種疊合正方形的示意圖,并求出AD、BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明新家裝修,在裝修客廳時,購進(jìn)彩色地磚和單色地磚共100塊,共花費(fèi)5600元.已知彩色地磚的單價是80元/塊,單色地磚的單價是40元/塊.
(1)兩種型號的地磚各采購了多少塊?
(2)如果廚房也要鋪設(shè)這兩種型號的地磚共60塊,且采購地磚的費(fèi)用不超過3200元,那么彩色地磚最多能采購多少塊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間的甲、乙兩名工人分別同時生產(chǎn)500只同一型號的零件,他們生產(chǎn)的零件y(只)與生產(chǎn)時間x(分)的函數(shù)關(guān)系的圖象如圖所示.根據(jù)圖象提供的信息解答下列問題:
(1)甲每分鐘生產(chǎn)零件只;乙在提高生產(chǎn)速度之前已生產(chǎn)了零件 只;
(2)若乙提高速度后,乙的生產(chǎn)速度是甲的2倍,請分別求出甲、乙兩人生產(chǎn)全過程中,生產(chǎn)的零件y(只)與生產(chǎn)時間x(分)的函數(shù)關(guān)系式;
(3)當(dāng)兩人生產(chǎn)零件的只數(shù)相等時,求生產(chǎn)的時間;并求出此時甲工人還有多少只零件沒有生產(chǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABCD的頂點(diǎn)A、C分別在直線x=2和x=5上,O是坐標(biāo)原點(diǎn),則對角線OB長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反映的過程是小濤從家出發(fā),去菜地澆水,又去玉米地鋤草,然后回家.其中x表示時間,y表示小濤離家的距離.
(1)菜地離小濤家的距離是____km,小濤走到菜地用了____min,小濤給菜地澆水用了___min.
(2)菜地離玉米地的距離是____km,小濤從菜地到地用了____min,小濤給玉米地鋤草用了____min.
(3)玉米地離小濤家的距離是___km,小濤從玉米地走回家的平均速度是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,以大于BF的相同長為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長交BC于點(diǎn)E,連接EF,得四邊形ABEF.
求證:四邊形ABEF是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com