7、已知矩形ABCD中,對(duì)角線AC=10,周長(zhǎng)為28,則矩形的面積為
48
分析:設(shè)長(zhǎng)方形的長(zhǎng)為x、寬為y,根據(jù)長(zhǎng)方形的周長(zhǎng)可以計(jì)算x+y的值,根據(jù)勾股定理即可列出關(guān)于x、y的方程式,即可求得x、y的值.
解答:解:長(zhǎng)方形的長(zhǎng)為x、寬為y,
矩形周長(zhǎng)為28,則x+y=14,
且x2+y2=100,
解得x=8,y=6,
故矩形的面積為xy=6×8=48.
故答案為:48.
點(diǎn)評(píng):本題考查了矩形面積的計(jì)算,長(zhǎng)方形對(duì)邊相等、對(duì)角線相等的性質(zhì),勾股定理在直角三角形中的運(yùn)用,本題中根據(jù)x、y的關(guān)系式求x、y的值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知矩形ABCD中,CD=2,AD=3,點(diǎn)P是AD上的一個(gè)動(dòng)點(diǎn)(與A、D不重合),過(guò)點(diǎn)P作PE⊥CP交直線AB于點(diǎn)E,設(shè)PD=x,AE=y,
(1)寫(xiě)出y與x的函數(shù)解析式,并指出自變量的取值范圍;
(2)如果△PCD的面積是△AEP面積的4倍,求CE的長(zhǎng);
(3)是否存在點(diǎn)P,使△APE沿PE翻折后,點(diǎn)A落在BC上?證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知矩形ABCD中,AB=4,對(duì)角線BD=2AB,且BE平分∠ABD,點(diǎn)P從點(diǎn)D以每秒2個(gè)單位沿DB方向向點(diǎn)B運(yùn)動(dòng)精英家教網(wǎng),點(diǎn)Q從點(diǎn)B以每秒1個(gè)單位沿BA方向向點(diǎn)A運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,△BPQ的面積為S.
(1)若t=2時(shí),求證:△DBA∽△PBQ;
(2)求S關(guān)于t的函數(shù)關(guān)系式及S的最大值;
(3)在運(yùn)動(dòng)的過(guò)程中,△BQM能否成為等腰三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知矩形ABCD中,對(duì)角線AC、BD交于O,若∠AOB=120°,BD=8cm,則矩形ABCD的面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD中,BC=6,AB=8,延長(zhǎng)AD到點(diǎn)E,使AE=15,連接BE交AC于點(diǎn)P.
(1)求AP的長(zhǎng);
(2)若以點(diǎn)A為圓心,AP為半徑作⊙A,試判斷線段BE與⊙A的位置關(guān)系并說(shuō)明理由;
(3)已知以點(diǎn)A為圓心,r1為半徑的動(dòng)⊙A,使點(diǎn)D在動(dòng)⊙A的內(nèi)部,點(diǎn)B在動(dòng)⊙A的外部.
①求動(dòng)⊙A的半徑r1的取值范圍;
②若以點(diǎn)C為圓心,r2為半徑的動(dòng)⊙C與動(dòng)⊙A相切,求r2的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖:已知矩形ABCD中,CE∥DF.
(1)請(qǐng)問(wèn)圖中有哪幾對(duì)三角形全等,全部寫(xiě)出來(lái)(不另添輔助線);
(2)請(qǐng)任選其中一對(duì)全等三角形給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案