(2008•仙桃)小華將一張矩形紙片(如圖1)沿對角線CA剪開,得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上.
(1)若ED與BC相交于點G,取AG的中點M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(如圖3),請你觀察、測量MB、MD的長度,猜想并寫出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;
(2)在(1)的條件下,求出∠BMD的大。ㄓ煤恋氖阶颖硎荆,并說明當(dāng)α=45°時,△BMD是什么三角形;
(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點C逆時針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90°),此時△CGD變成△CHD,同樣取AH的中點M,連接MB、MD(如圖4),請繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫出你的猜想,不需要證明,并說明α為何值時,△BMD為等邊三角形.

【答案】分析:(1)易得MB和DM分別是直角三角形ABG和直角三角形ADG斜邊上的中線,都等于AG的一半,那么BM=DM.
(2)把∠BMD進(jìn)行合理分割,應(yīng)用外角等于內(nèi)角和,得到∠BMD與∠BAD之間的關(guān)系,進(jìn)而得到與∠ACB即∠α之間的關(guān)系,當(dāng)∠α=45°時,∠BMD=90°,那么△BMD為等腰直角三角形.
(3)通過類比思想可猜想MB與MD的數(shù)量關(guān)系和∠BMD的大小結(jié)論依然成立.那么只有當(dāng)∠α=60°時,△BMD為等邊三角形.
解答:解:(1)MB=MD,
證明:∵AG的中點為M∴在Rt△ABG中,MB=AG
在Rt△ADG中,MD=AG
∴MB=MD.

(2)∵∠BMG=∠BAM+∠ABM=2∠BAM,
同理∠DMG=∠DAM+∠ADM=2∠DAM,
∴∠BMD=2∠BAM+2∠DAM=2∠BAC,
而∠BAC=90°-α,
∴∠BMD=180°-2α,
∴當(dāng)α=45°時,∠BMD=90°,此時△BMD為等腰直角三角形.

(3)當(dāng)△CGD繞點C逆時針旋轉(zhuǎn)一定的角度,仍然存在MB=MD,
∠BMD=180°-2α,
故當(dāng)α=60°時,△BMD為等邊三角形.
解法:延長DM至N,使MN=DM,連AN、BN、BD,則有AN=DH,∠NAM=∠DHM

∵∠1=∠AHD+∠2
∴∠BAM+90°=∠AHD+90°-∠DCB,
∴∠NAB=∠DCB,
∵∠CDH=∠ABC=90°,∠DCH=∠BCA,
∴△CDH∽△CBA,
∴DH:AB=CD:BC,
∴AN:AB=CD:BC,
∴△NAB∽△DCB,
∴∠NBA=∠DBC
∴∠NBD=90°,
∴BM=MD,
由△NAB∽△DCB得NB:AB=BD:BC
∴△NBD∽△ABC,
∴∠BNM=∠BAC,
∵∠BMD=2∠BNM
∴∠BMD=2(90°-α)=180°-2α.
點評:此題是一道集剪接、平移、旋轉(zhuǎn)為一體的直線形操作探究題,學(xué)生可以用自己身邊的直觀模型(將一矩形紙片剪開,得到兩個全等的直角三角形紙片),按照第(1)問中的操作要求實際進(jìn)行操作演示,在操作、觀察、度量的基礎(chǔ)上再進(jìn)行論證,較好地體現(xiàn)了從感性認(rèn)識到理性認(rèn)識的思維過程.第(2)問運用直線形的有關(guān)知識不難得出結(jié)論.第(3)問必須在第(1)、(2)問的基礎(chǔ)上再進(jìn)行觀察、猜想、歸納、總結(jié)出一般規(guī)律.此題既考查了直線形的有關(guān)知識,又考查了學(xué)生操作、觀察、驗證、推理的能力,不愧是一道獨具匠心的試題.它給我們的啟示是:在平時教學(xué)中要多給學(xué)生提供從事數(shù)學(xué)活動的機會,積極引導(dǎo)學(xué)生參與實踐操作活動,培養(yǎng)他們的積極動手、樂于探究的意識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圖形的旋轉(zhuǎn)》(03)(解析版) 題型:解答題

(2008•仙桃)小華將一張矩形紙片(如圖1)沿對角線CA剪開,得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上.
(1)若ED與BC相交于點G,取AG的中點M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(如圖3),請你觀察、測量MB、MD的長度,猜想并寫出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;
(2)在(1)的條件下,求出∠BMD的大。ㄓ煤恋氖阶颖硎荆,并說明當(dāng)α=45°時,△BMD是什么三角形;
(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點C逆時針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90°),此時△CGD變成△CHD,同樣取AH的中點M,連接MB、MD(如圖4),請繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫出你的猜想,不需要證明,并說明α為何值時,△BMD為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圖形的對稱》(05)(解析版) 題型:解答題

(2008•仙桃)小華將一張矩形紙片(如圖1)沿對角線CA剪開,得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上.
(1)若ED與BC相交于點G,取AG的中點M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(如圖3),請你觀察、測量MB、MD的長度,猜想并寫出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;
(2)在(1)的條件下,求出∠BMD的大。ㄓ煤恋氖阶颖硎荆,并說明當(dāng)α=45°時,△BMD是什么三角形;
(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點C逆時針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90°),此時△CGD變成△CHD,同樣取AH的中點M,連接MB、MD(如圖4),請繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫出你的猜想,不需要證明,并說明α為何值時,△BMD為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《三角形》(16)(解析版) 題型:解答題

(2008•仙桃)小華將一張矩形紙片(如圖1)沿對角線CA剪開,得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上.
(1)若ED與BC相交于點G,取AG的中點M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(如圖3),請你觀察、測量MB、MD的長度,猜想并寫出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;
(2)在(1)的條件下,求出∠BMD的大。ㄓ煤恋氖阶颖硎荆,并說明當(dāng)α=45°時,△BMD是什么三角形;
(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點C逆時針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90°),此時△CGD變成△CHD,同樣取AH的中點M,連接MB、MD(如圖4),請繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫出你的猜想,不需要證明,并說明α為何值時,△BMD為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年湖北省江漢油田中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•仙桃)小華將一張矩形紙片(如圖1)沿對角線CA剪開,得到兩張三角形紙片(如圖2),其中∠ACB=α,然后將這兩張三角形紙片按如圖3所示的位置擺放,△EFD紙片的直角頂點D落在△ACB紙片的斜邊AC上,直角邊DF落在AC所在的直線上.
(1)若ED與BC相交于點G,取AG的中點M,連接MB、MD,當(dāng)△EFD紙片沿CA方向平移時(如圖3),請你觀察、測量MB、MD的長度,猜想并寫出MB與MD的數(shù)量關(guān)系,然后證明你的猜想;
(2)在(1)的條件下,求出∠BMD的大。ㄓ煤恋氖阶颖硎荆⒄f明當(dāng)α=45°時,△BMD是什么三角形;
(3)在圖3的基礎(chǔ)上,將△EFD紙片繞點C逆時針旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于90°),此時△CGD變成△CHD,同樣取AH的中點M,連接MB、MD(如圖4),請繼續(xù)探究MB與MD的數(shù)量關(guān)系和∠BMD的大小,直接寫出你的猜想,不需要證明,并說明α為何值時,△BMD為等邊三角形.

查看答案和解析>>

同步練習(xí)冊答案