已知:△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=∠DCO.連接AD、BC,點(diǎn)M、N、P分別為OA、OD、BC的中點(diǎn).
(1)如圖1,若A、O、C三點(diǎn)在同一直線上,且∠ABO=60°,則△PMN的形狀是
 
,此時(shí)
AD
BC
=
 
;
(2)如圖2,若A、O、C三點(diǎn)在同一直線上,且∠ABO=2α,證明△PMN∽△BAO,并計(jì)算
AD
BC
的值(用含α的式子表示);
(3)在圖2中,固定△AOB,將△COD繞點(diǎn)O旋轉(zhuǎn),直接寫出PM的最大值.
精英家教網(wǎng)
分析:(1)由于AB=OB,CD=OC,∠ABO=∠DCO,且∠ABO=60°,則△AOB和△COD都為等邊三角形,又A、O、C三點(diǎn)在同一直線上,則△PMN為等邊三角形,AD=BC.
(2)連接BM、CN,由于△ABO與△MPN都為等腰三角形,且證得∠MPN=∠ABO,則△PMN∽△BAO,
AD
BC
的值可在Rt△BMA中求得.
(3)結(jié)合圖形,直接可寫出△COD繞點(diǎn)O旋轉(zhuǎn)后PM的最大值.
解答:解:(1)連接BM,CN,
∵△AOB中,AB=OB=2,△COD中,CD=OC=3,∠ABO=60°,
∴△AOB與△COD是等邊三角形,
又∵點(diǎn)M、N、P分別為OA、OD、BC的中點(diǎn),
∴BM⊥AC,CN⊥BD,∠MBO=
1
2
∠ABO=∠NCO=
1
2
∠OCD=30°,
∴PM=PN=
1
2
BC,
∴∠PBM=∠PMB,∠PCN=∠PNC,
∵∠BAO=∠DCO=60°,
∴AB∥CD,
∴∠ABC+∠DCB=180°,
∴∠MBP+∠BCN=180°-∠ABM-∠DCN=120°,
∴∠BPM+∠NPC=360°-2(∠MBP+∠BCN)=120°,
∴∠MPN=60°,
∴△PMN是等邊三角形,
∴PM=PN=MN,
∵AD=2MN,BC=2PM,
AD
BC
=1.

(2)證明:連接BM、CN.
由題意,得BM⊥OA,CN⊥OD,∠AOB=∠COD=90°-α.
∵A、O、C三點(diǎn)在同一直線上,
∴B、O、D三點(diǎn)在同一直線上.
∴∠BMC=∠CNB=90°.
∵P為BC中點(diǎn),
∴在Rt△BMC中,PM=
1
2
BC

在Rt△BNC中,PN=
1
2
BC
,
∴PM=PN.
∴B、C、N、M四點(diǎn)都在以P為圓心,
1
2
BC
為半徑的圓上.
∴∠MPN=2∠MBN.
又∵∠MBN=
1
2
∠ABO=α
,
∴∠MPN=∠ABO.
∴△PMN∽△BAO.
MN
PM
=
AO
BA
.由題意,MN=
1
2
AD
,又PM=
1
2
BC

AD
BC
=
MN
PM

AD
BC
=
AO
BA

在Rt△BMA中,
AM
AB
=sinα

∵AO=2AM,
AO
BA
=2sinα

AD
BC
=2sinα


(3)
5
2

當(dāng)OC∥AB時(shí),即四邊形ABCO是梯形時(shí),PM有最大值.
PM=(AB+CD)÷2=(2+3)÷2=
5
2

精英家教網(wǎng)
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì)及等邊三角形的確定條件,綜合性強(qiáng),較為復(fù)雜.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知在△AOB中,∠B=90°,AB=OB,點(diǎn)O的坐標(biāo)為(0,0),點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B在第一象限內(nèi),將這個(gè)三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)75°后,那么旋轉(zhuǎn)后點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知Rt△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的直角坐標(biāo)系,設(shè)P、Q分別為AB、OB邊上的動(dòng)點(diǎn),他們同時(shí)分別從點(diǎn)A、O向B點(diǎn)勻速移動(dòng),移動(dòng)的速度都是1厘米/秒,設(shè)P、Q移動(dòng)時(shí)間為精英家教網(wǎng)t秒(0≤t≤4)
(1)試用t的代數(shù)式表示P點(diǎn)的坐標(biāo);
(2)求△OPQ的面積S(cm2)與t(秒)的函數(shù)關(guān)系式;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;
(3)試問是否存在這樣的時(shí)刻t,使△OPQ為直角三角形?如果存在,求出t的值,如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•普陀區(qū)二模)已知在△AOB中,∠B=90°,AB=OB,點(diǎn)O的坐標(biāo)為(0,0),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B在第一象限內(nèi),將這個(gè)三角形繞原點(diǎn)O旋轉(zhuǎn)75°后,那么旋轉(zhuǎn)后點(diǎn)B的坐標(biāo)為
(2
6
,-2
2
)或(-2
2
,2
6
(2
6
,-2
2
)或(-2
2
,2
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年四川省綿陽市富樂中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

已知在△AOB中,∠B=90°,AB=OB,點(diǎn)O的坐標(biāo)為(0,0),點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B在第一象限內(nèi),將這個(gè)三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)75°后,那么旋轉(zhuǎn)后點(diǎn)B的坐標(biāo)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案