【題目】從甲地到乙地的鐵路路程約為615千米,高鐵速度為300千米/小時(shí),直達(dá);動(dòng)車(chē)速度為200千米/小時(shí),行駛180千米后,中途要?啃熘10分鐘,若動(dòng)車(chē)先出發(fā)半小時(shí),兩車(chē)與甲地之間的距離y(千米)與動(dòng)車(chē)行駛時(shí)間x(小時(shí))之間的函數(shù)圖象為( 。

A. B.

C. D.

【答案】B

【解析】

先根據(jù)兩車(chē)并非同時(shí)出發(fā),得出D選項(xiàng)錯(cuò)誤;再根據(jù)高鐵從甲地到乙地的時(shí)間以及動(dòng)車(chē)從甲地到乙地的時(shí)間,得出兩車(chē)到達(dá)乙地的時(shí)間差,結(jié)合圖形排除A、 C選項(xiàng),即可得出結(jié)論.

:由題可得,兩車(chē)并非同時(shí)出發(fā),D選項(xiàng)錯(cuò)誤;高鐵從甲地到乙地的時(shí)間為615300=2.05h

動(dòng)車(chē)從甲地到乙地的時(shí)間為

615200+3.24h,

動(dòng)車(chē)先出發(fā)半小時(shí),

兩車(chē)到達(dá)乙地的時(shí)間差為3.24-2.05-0.5=0.69h,該時(shí)間差小于動(dòng)車(chē)從甲地到乙地所需時(shí)間的一半,C選項(xiàng)錯(cuò)誤;

0.69>0.5,

兩車(chē)到達(dá)乙地的時(shí)間差大于半小時(shí),A選項(xiàng)錯(cuò)誤,

動(dòng)車(chē)行駛180千米所需的時(shí)間為

180200=0.9h,而高鐵遲出發(fā)0.5h,

0.9>0.5,B選項(xiàng)符合題意,A選項(xiàng)不合題意.所以B選項(xiàng)是正確的.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如表是一個(gè)4×4(4行4列共16個(gè)“數(shù)”組成)的奇妙方陣,從這個(gè)方陣中選四個(gè)“數(shù)”,而且這四個(gè)“數(shù)”中的任何兩個(gè)不在同一行,也不在同一列,有很多選法,把每次選出的四個(gè)“數(shù)”相加,其和是定值,則方陣中第三行三列的“數(shù)”是(

30

2 sin60°

22

﹣3

﹣2

sin45°

0

|﹣5|

6

23

1

4

1


A.5
B.6
C.7
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)C的極坐標(biāo)方程為ρsin2θ=mcosθ(m>0),過(guò)點(diǎn)P(﹣2,﹣4)且傾斜角為 的直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn).
(1)寫(xiě)出曲線(xiàn)C的直角坐標(biāo)方程和直線(xiàn)l的普通方程;
(2)若|AP||BP|=|BA|2 , 求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校用簡(jiǎn)單隨機(jī)抽樣方法抽取了100名同學(xué),對(duì)其日均課外閱讀時(shí)間(單位:分鐘)進(jìn)行調(diào)查,結(jié)果如下:

t

[0,15)

[15,30)

[30,45)

[45,60)

[60,75)

[75,90)

男同學(xué)人數(shù)

7

11

15

12

2

1

女同學(xué)人數(shù)

8

9

17

13

3

2

若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱(chēng)為“讀書(shū)迷”.
(1)將頻率視為概率,估計(jì)該校4000名學(xué)生中“讀書(shū)迷”有多少人?
(2)從已抽取的8名“讀書(shū)迷”中隨機(jī)抽取4位同學(xué)參加讀書(shū)日宣傳活動(dòng). (i)求抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)的概率;
(ii)記抽取的“讀書(shū)迷”中男生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)F2 , P分別為雙曲線(xiàn) 的右焦點(diǎn)與右支上的一點(diǎn),O為坐標(biāo)原點(diǎn),若2 |,且 ,則該雙曲線(xiàn)的離心率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果函數(shù)f(x)在[a,b]上存在x1 , x2(a<x1<x2<b)滿(mǎn)足 ,則稱(chēng)函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”.已知函數(shù)f(x)=x3﹣x2+a是[0,a]上的“雙中值函數(shù)”,則實(shí)數(shù)a的取值范圍是(
A.
B.(
C.( ,1)
D.( ,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),等腰直角三角形ABC的底邊AB=4,點(diǎn)D在線(xiàn)段AC上,DE⊥AB于E,現(xiàn)將△ADE沿DE折起到△PDE的位置(如圖(2)).
(Ⅰ)求證:PB⊥DE;
(Ⅱ)若PE⊥BE,直線(xiàn)PD與平面PBC所成的角為30°,求PE長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,約成書(shū)于四、五世紀(jì),也就是大約一千五百年前,傳本的《孫子算經(jīng)》共三卷.卷中有一問(wèn)題:“今有方物一束,外周一匝有三十二枚,問(wèn)積幾何?”該著作中提出了一種解決此問(wèn)題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過(guò)對(duì)該題的研究發(fā)現(xiàn),若一束方物外周一匝的枚數(shù)n是8的整數(shù)倍時(shí),均可采用此方法求解.如圖,是解決這類(lèi)問(wèn)題的程序框圖,若輸入n=40,則輸出的結(jié)果為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線(xiàn)l的方程為x﹣y+4=0,曲線(xiàn)C的參數(shù)方程 (α為參數(shù)) (Ⅰ)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo) ,判斷點(diǎn)P與直線(xiàn)l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q為曲線(xiàn)C上的一個(gè)動(dòng)點(diǎn),求它到直線(xiàn)l的距離的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案