如圖,點(diǎn)P是⊙O 外一點(diǎn),PA切⊙O于點(diǎn)A,AB是⊙O的直徑,連接OP,過(guò)點(diǎn)B作BC∥OP交⊙O于點(diǎn)C,連接AC交OP于點(diǎn)D.
(1)求證:PC是⊙O的切線;
(2)若PD=cm,AC=8cm,求圖中陰影部分的面積;
(3)在(2)的條件下,若點(diǎn)E是的中點(diǎn),連接CE,求CE的長(zhǎng).
證明: ⑴如圖,連接OC,
∵PA切⊙O于A.
∴∠PAO=90º. ····················································································································· 1分
∵OP∥BC,
∴∠AOP=∠OBC,∠COP=∠OCB.
∵OC=OB,
∴∠OBC=∠OCB,
∴∠AOP=∠COP. ··············································································································· 3分
又∵OA=OC,OP=OP,
∴△PAO≌△PCO (SAS).
∴∠PAO=∠PCO=90 º,
又∵OC是⊙O的半徑,
∴PC是⊙O的切線. ·············································································································· 5分⑵解法一:
由(1)得PA,PC都為圓的切線,
∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90 º,
∴∠PAD+∠DAO=∠DAO+∠AOD,
∴∠PAD =∠AOD,
∴△ADO∽△PDA. ············································································································· 6分
∴,
∴,
∵AC=8, PD=,
∴AD=AC=4,OD=3,AO=5,····························································································· 7分
由題意知OD為△ABC的中位線,
∴BC=2OD=6,AB=10. ······································································································· 8分
∴S陰=S半⊙O-S△ACB=.
答:陰影部分的面積為.··················································································· 9分
解法二:
∵AB是⊙O的直徑,OP∥BC,
∴∠PDC=∠ACB=90º.
∵∠PCO=90 º,
∴∠PCD+∠ACO=∠ACO+∠OCB=90 º,
即∠PCD=∠OCB.
又∵∠OBC =∠OCB,
∴∠PCD=∠OBC,
∴△PDC∽△ACB, ······································ 6分
∴.
又∵AC=8, PD=,
∴AD=DC=4,PC=.··················································································· 7分
∴,
∴CB=6,AB=10, ················································································································ 8分
∴S陰=S半⊙O-S△ACB=.
答:陰影部分的面積為.··················································································· 9分
(3)如圖,連接AE,BE,過(guò)點(diǎn)B作BM⊥CE于點(diǎn)M.························································ 10分
∴∠CMB=∠EMB=∠AEB=90º,
又∵點(diǎn)E是的中點(diǎn),
∴∠ECB=∠CBM=∠ABE=45º,CM=MB =,BE=ABcos45º=,······························· 11分
∴ EM=,
∴CE=CM+EM=.
答:CE的長(zhǎng)為cm. ····································································································· 12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省濱?h七年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題共有2小題,每小題6分,共12分)
解方程:(1);
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年江蘇省濱海縣八年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
把6978000按四舍五入法精確到萬(wàn)位的近似值用科學(xué)記數(shù)法表示為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,邊長(zhǎng)為n的正方形OABC的邊OA、OC分別在x軸和y軸的正半軸上,A1、A2、A3、…、An-1為OA的n等分點(diǎn),B1、B2、B3、…、Bn-1為CB的n等分點(diǎn),連接A1B1、A2B2、A3B3、…、An-1Bn-1,分別交()于點(diǎn)C1、C2、C3、…、Cn-1,當(dāng)時(shí),則n= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com