【題目】如圖,在⊙O中,AB為直徑,點(diǎn)C為圓上一點(diǎn),將劣弧沿弦AC翻折交AB于點(diǎn)D,連結(jié)CD.若點(diǎn)D與圓心O不重合,∠BAC=25°,則∠DCA的度數(shù)為度.

【答案】40
【解析】解:連接BC, ∵AB是直徑,
∴∠ACB=90°,
∵∠BAC=25°,
∴∠B=90°﹣∠BAC=90°﹣25°=65°,
根據(jù)翻折的性質(zhì), 所對(duì)的圓周角為∠B, 所對(duì)的圓周角為∠ADC,
∴∠ADC+∠B=180°,
∴∠B=∠CDB=65°,
∴∠DCA=∠CDB﹣∠A=65°﹣25°=40°.
故答案為:40.

首先連接BC,由AB是直徑,可求得∠ACB=90°,則可求得∠B的度數(shù),然后由翻折的性質(zhì)可得, 所對(duì)的圓周角為∠B, 所對(duì)的圓周角為∠ADC,繼而求得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察,在如圖所示的各圖中找對(duì)頂角(不含平角):

(1)如圖a,圖中共有_____對(duì)對(duì)頂角.

(2)如圖b,圖中共有_____對(duì)對(duì)頂角.

(3)如圖c,圖中共有_____對(duì)對(duì)頂角

(4)研究(1)~(3)小題中直線(xiàn)條數(shù)與對(duì)頂角的對(duì)數(shù)之間的關(guān)系,若有n條直線(xiàn)相交于一點(diǎn),則可形成多少對(duì)對(duì)頂角?

(5)若有2000條直線(xiàn)相交于一點(diǎn),則可形成多少對(duì)對(duì)頂角?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABDC中,∠D=B=90°,點(diǎn)OBD的中點(diǎn),且AO平分∠BAC.

(1)求證:CO平分∠ACD;

(2)求證:OAOC;

(3)求證:AB+CD=AC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若兩條拋物線(xiàn)的頂點(diǎn)相同,則稱(chēng)它們?yōu)椤坝押脪佄锞(xiàn)”,已知拋物線(xiàn)C1:y1=﹣x2+ax+b與拋物線(xiàn)C2:y2=2x2+4x+6為“友好拋物線(xiàn)”,拋物線(xiàn)C1與x軸交于點(diǎn)A、C,與y軸交于點(diǎn)B.

(1)求拋物線(xiàn)C1的表達(dá)式.
(2)若F(t,0)(﹣3<t<0)是x軸上的一點(diǎn),過(guò)點(diǎn)F作x軸的垂線(xiàn)交拋物線(xiàn)與點(diǎn)P,交直線(xiàn)AB于點(diǎn)E,過(guò)點(diǎn)P作PD⊥AB于點(diǎn)D.

①是否存在點(diǎn)F,使PE+PD的值最大,若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.
②連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點(diǎn)F的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)正方形APMN中的邊MN與y軸有且僅有一個(gè)交點(diǎn)時(shí),求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0),將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在直線(xiàn)y=2x﹣6上時(shí),線(xiàn)段BC掃過(guò)的面積為 cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校舉行春季運(yùn)動(dòng)會(huì),需要在初三年級(jí)選取1或2名同學(xué)作為志愿者,初三(5)班的小熊、小樂(lè)和初三(6)班的小矛、小管4名同學(xué)報(bào)名參加.
(1)若從這4名同學(xué)中隨機(jī)選取1名志愿者,則被選中的這名同學(xué)恰好是初三(5)班同學(xué)的概率是;
(2)若從這4名同學(xué)中隨機(jī)選取2名志愿者,請(qǐng)用列舉法(畫(huà)樹(shù)狀圖或列表)求這2名同學(xué)恰好都是初三(6)班同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)AB,CD相交于點(diǎn)O,OA平分EOC

(1)若EOC=70°,求BOD的度數(shù);

(2)若EOCEOD=2:3,求BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(感知)如圖①,ABCD,點(diǎn)E在直線(xiàn)ABCD之間,連結(jié)AE、BE,試說(shuō)明∠BEE+DCE=AEC.下面給出了這道題的解題過(guò)程,請(qǐng)完成下面的解題過(guò)程,并填空(理由或數(shù)學(xué)式):

解:如圖①,過(guò)點(diǎn)EEFAB

∴∠BAE=1(   

ABCD(   

CDEF(   

∴∠2=DCE

∴∠BAE+DCE=1+2(   

∴∠BAE+DCE=AEC

(探究)當(dāng)點(diǎn)E在如圖②的位置時(shí),其他條件不變,試說(shuō)明∠AEC+FGC+DCE=360°;

(應(yīng)用)點(diǎn)E、F、G在直線(xiàn)ABCD之間,連結(jié)AE、EF、FGCG,其他條件不變,如圖③.若∠EFG=36°,則∠BAE+AEF+FGC+DCG=   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線(xiàn)段DO上的動(dòng)點(diǎn),過(guò)點(diǎn)E作PE⊥x軸交拋物線(xiàn)于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.

(1)求該拋物線(xiàn)的解析式;
(2)當(dāng)點(diǎn)P在直線(xiàn)BC上方時(shí),請(qǐng)用含m的代數(shù)式表示PG的長(zhǎng)度;
(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案