【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論:①二次三項(xiàng)式ax2+bx+c的最大值為4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的兩根之和為﹣1;④使y≤3成立的x的取值范圍是x≥0.其中正確的結(jié)論有(填上序號(hào)即可)
【答案】①②
【解析】解:∵拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(﹣1,4),∴二次三項(xiàng)式ax2+bx+c的最大值為4,①正確; ∵x=2時(shí),y<0,∴4a+2b+c<0,②正確;
根據(jù)拋物線(xiàn)的對(duì)稱(chēng)性可知,一元二次方程ax2+bx+c=1的兩根之和為﹣2,③錯(cuò)誤;
使y≤3成立的x的取值范圍是x≥0或x≤﹣2,④錯(cuò)誤,
所以答案是:①②.
【考點(diǎn)精析】掌握二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線(xiàn)與坐標(biāo)軸的交點(diǎn)是解答本題的根本,需要知道二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開(kāi)口方向:a>0時(shí),拋物線(xiàn)開(kāi)口向上; a<0時(shí),拋物線(xiàn)開(kāi)口向下b與對(duì)稱(chēng)軸有關(guān):對(duì)稱(chēng)軸為x=-b/2a;c表示拋物線(xiàn)與y軸的交點(diǎn)坐標(biāo):(0,c);一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當(dāng)x>1時(shí),y的值隨x值的增大而減。
③3是方程ax2+(b﹣1)x+c=0的一個(gè)根;
④當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn) 與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,拋物線(xiàn)對(duì)稱(chēng)軸與x軸相交于點(diǎn)M,
(1)求△ABC的面積;
(2)若p是x軸上方的拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),求點(diǎn)P到直線(xiàn)BC的距離的最大值;
(3)若點(diǎn)P在拋物線(xiàn)上運(yùn)動(dòng)(點(diǎn)P異于點(diǎn)A),當(dāng)∠PCB=∠BCA時(shí),求直線(xiàn)PC的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:如圖①,四邊形 ABCD是正方形,BE⊥BF,BE=BF,求證:△ABE≌△CBF;
方法拓展:如圖②,ABCD是矩形,BC=2AB,BF⊥BE,BF=2BE,若矩形ABCD的面積為40,△ABE的面積為4,求陰影部分圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,已知AD>AB,在邊AD上取點(diǎn)E,連結(jié)CE,過(guò)點(diǎn)E作EF⊥CE,與邊AB的延長(zhǎng)線(xiàn)交于點(diǎn)F.
(1)證明:△AEF∽△DCE.
(2)若AB=2,AE=3,AD=7,求線(xiàn)段AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料并解答下列問(wèn)題.
你知道嗎?一些代數(shù)恒等式可以用平面圖形的面積來(lái)表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用圖甲中的①或②的面積表示.
(1)請(qǐng)寫(xiě)出圖乙所表示的代數(shù)恒等式;
(2)畫(huà)出一個(gè)幾何圖形,使它的面積能表示(a+b)(a+3b)=a2+4ab+3b2;
(3)請(qǐng)仿照上述式子另寫(xiě)一個(gè)含有a,b的代數(shù)恒等式,并畫(huà)出與之對(duì)應(yīng)的幾何圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)活動(dòng)﹣旋轉(zhuǎn)變換
(1)如圖①,在△ABC中,∠ABC=130°,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)50°,得到△A′B′C,連接BB′,求∠A′B′B的大。
(2)如圖②,在△ABC中,∠ABC=150°,AB=3,BC=5,將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到△A′B′C,連接BB′,以A′為圓心,A′B′長(zhǎng)為半徑作圓. (Ⅰ)猜想:直線(xiàn)BB′與⊙A′的位置關(guān)系,并證明你的結(jié)論;
(Ⅱ)連接A′B,求線(xiàn)段A′B的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(3,0),B(0,4),則點(diǎn)B100的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,,AE平分,,交AC延長(zhǎng)線(xiàn)于F,且垂足為E,則下列結(jié)論:;;,;其中正確的結(jié)論有______填寫(xiě)序號(hào)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com