【題目】如圖1,長方形OABC的邊OA、OC分別在x軸、y軸上,B點坐標是(8,4),將△AOC沿對角線AC翻折得△ADC,AD與BC相交于點E.
(1)求證:△CDE≌△ABE
(2)求E點坐標;
(3)如圖2,動點P從點A出發(fā),沿著折線A→B→C→O運動(到點O停止),是否存在點P,使得△POA的面積等于△ACE的面積,若存在,直接寫出點P坐標,若不存在,說明理由.
【答案】(1)見解析;(2)E(5,4);(3)存在,滿足條件的點P的坐標為(8,)或(0,),理由見解析
【解析】
(1)用角角邊定理即可證明.
(2)設(shè)CE=AE=n,則BE=8-n,利用勾股定理即可求解.
(3)構(gòu)建方程確定點P的縱坐標即可解決問題.
解:(1)證明:∵四邊形OABC為矩形,
∴AB=OC,∠B=∠AOC=90°,
∴CD=OC=AB,∠D=∠AOC=∠B,
又∠CED=∠ABE,
∴△CDE≌△ABE(AAS),
∴CE=AE;
(2)∵B(8,4),即AB=4,BC=8.
∴設(shè)CE=AE=n,則BE=8﹣n,
可得(8﹣n)2+42=n2,
解得:n=5,
∴E(5,4);
(3)∵S△ACE=CEAB=×5×4=10,
∴S△POA=OAyP=10,
∴×8×yP=10,
∴yP=,
∴滿足條件的點P的坐標為(8,)或(0,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一水池的容積V(公升)與注入水的時間t(分鐘)之間開始是一次函數(shù)關(guān)系,表中記錄的是這段時間注入水的時間與水池容積部分對應(yīng)值.
注入水的時間t(分鐘) | 0 | 10 | … | 25 |
水池的容積V(公升) | 100 | 300 | … | 600 |
(1)求這段時間時V關(guān)于t的函數(shù)關(guān)系式(不需要寫出函數(shù)的定義域);
(2)從t為25分鐘開始,每分鐘注入的水量發(fā)生變化了,到t為27分鐘時,水池的容積為726公升,如果這兩分鐘中的每分鐘注入的水量增長的百分率相同,求這個百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長方形對角線上任一點作兩條分別平行于兩鄰邊的直線,則所容兩長方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補”原理復(fù)原了《海島算經(jīng)》九題古證,根據(jù)圖形可知他得出的這個推論指( )
A. S矩形ABMN=S矩形MNDCB. S矩形EBMF=S矩形AEFN
C. S矩形AEFN=S矩形MNDCD. S矩形EBMF=S矩形NFGD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,A,B兩個頂點在x軸的上方,點C的坐標是(-1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,記所得的像是△A′B′C.設(shè)點B的對應(yīng)點B′的橫坐標是a,則點B的橫坐標是( )
A. - B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班50名學(xué)生期末考試數(shù)學(xué)成績(單位:分)的頻率分布條形圖如圖所示,其中數(shù)據(jù)不在分點上,對圖中提供的信息作出如下的判斷:
(1)成績在49.5分~59.5分段的人數(shù)與89.5分~100分段的人數(shù)相等;
(2)成績在79.5~89.5分段的人數(shù)占30%;
(3)成績在79.5分以上的學(xué)生有20人;
(4)本次考試成績的中位數(shù)落在69.5~79.5分段內(nèi).
其中正確的判斷有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸、y軸分別交于點A和點B,點C在線段AB上,點D在y軸的負半軸上,C、D兩點到x軸的距離均為2.
(1)點C的坐標為 ,點D的坐標為 ;
(2)點P為線段OA上的一動點,當(dāng)PC+PD最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,4),B(4,2),C(3,5)(每個方格的邊長均為1個單位長度)
(1)請畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于原點對稱;
(2)將△ABC繞點O逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出線段OB旋轉(zhuǎn)到OB2掃過圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:
①abc<0;②>0;③ac﹣b+1=0;④OAOB=﹣.
其中正確結(jié)論的個數(shù)是( )
A.4 B.3 C.2 D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com