【題目】同學(xué)們,在初一學(xué)習(xí)正多邊形和圓這節(jié)課時,我們就學(xué)習(xí)過四邊形的內(nèi)角和等于360°.下面我們就在四邊形中來研究幾個問題:
(1)問題背景:
如圖1:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC、CD上的點,且∠EAF=60°,探究圖中線段BE、EF、FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問題的方法是,延長FD到點G,使DG=BE.連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是______;
(2)探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E、F分別是BC、CD上的點,且∠EAF=∠BAD,上述結(jié)論是否仍成立,并說明理由;
(3)實際應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(點O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動指令后,艦艇甲向正東方向以45海里/時的速度前進(jìn),同時,艦艇乙沿北偏西50°的方向以60海里/時的速度前進(jìn),2小時后,指揮中心觀察到甲、乙兩艦艇分別到達(dá)E、F處,且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離.
【答案】(1)EF=BE+DF;(2)結(jié)論EF=BE+DF仍然成立;(3)此時兩艦艇之間的距離是210海里.
【解析】
(1)延長FD到點G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題;
(2)延長FD到點G.使DG=BE.連結(jié)AG,即可證明△ABE≌△ADG,可得AE=AG,再證明△AEF≌△AGF,可得EF=FG,即可解題
(3)連接EF,延長AE、BF相交于點C,然后與(2)同理可證.
解:(1)EF=BE+DF,證明如下:
在△ABE和△ADG中,
,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
故答案為 EF=BE+DF.
(2)結(jié)論EF=BE+DF仍然成立;
理由:延長FD到點G.使DG=BE.連結(jié)AG,如圖2,
在△ABE和△ADG中,,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
,
∴△AEF≌△AGF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
(3)如圖3,連接EF,延長AE、BF相交于點C,
∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,
∴∠EOF=∠AOB,
又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,
∴符合探索延伸中的條件,
∴結(jié)論EF=AE+BF成立,
即EF=2×(45+60)=210(海里).
答:此時兩艦艇之間的距離是210海里.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC.
(1)如圖1,如果∠BAD=30°,AD是BC上的高,AD=AE,則∠EDC=_____度;
(2)如圖2,如果∠BAD=40°,AD是BC上的高,AD=AE,則∠EDC=_______度;
(3)思考:通過以上兩題,你發(fā)現(xiàn)∠BAD與∠EDC之間有什么關(guān)系?請用式子表示:____________________.
(4)如圖3,如果AD不是BC上的高,AD=AE,是否仍有上述關(guān)系?如有,請你寫出來,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù) y=的圖象與一次函數(shù)y=mx+b的圖象交于兩點A(1,3),B(n,-1).
(1)求反比例函數(shù)與一次函數(shù)的函數(shù)關(guān)系式;
(2)根據(jù)圖象,回答當(dāng)一次函數(shù)的值大于反比例函數(shù)的值時,x 的取值范圍為________;
(3) 連接AO、BO,則△ABO的面積是_________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC、BD相交于點G,E、F分別是邊AD、BC的中點,AB=2,BC=4,一動點P從點B出發(fā),沿著B﹣A﹣D﹣C的方向在矩形的邊上運動,運動到點C停止.點M為圖1中的某個定點,設(shè)點P運動的路程為x,△BPM的面積為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示.那么,點M的位置可能是圖1中的( 。
A. 點CB. 點EC. 點FD. 點G
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四張撲克牌(方塊2、黑桃4、黑桃5、梅花5)的牌面如圖l,將撲克牌洗勻后,如圖2背面朝上放置在桌面上.小亮和小明設(shè)計的游戲規(guī)則是兩人同時抽取一張撲克牌,兩張牌面數(shù)字之和為奇數(shù)時,小亮獲勝;否則小明獲勝.請問這個游戲規(guī)則公平嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C.
(1)求點A的坐標(biāo);
(2)當(dāng)S△ABC=15時,求該拋物線的表達(dá)式;
(3)在(2)的條件下,經(jīng)過點C的直線與拋物線的另一個交點為D.該拋物線在直線上方的部分與線段CD組成一個新函數(shù)的圖象。請結(jié)合圖象回答:若新函數(shù)的最小值大于﹣8,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(6分)如圖:在平面直角坐標(biāo)系中,網(wǎng)格中每一個小正方形的邊長為1個單位長度;已知△ABC.
(1)作出△ABC以O(shè)為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°的△A1B1C1,(只畫出圖形).
(2)作出△ABC關(guān)于原點O成中心對稱的△A2B2C2,(只畫出圖形),寫出B2和C2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com