如圖所示,圓的外切等腰梯形ABCD的中位線EF=15cm,那么等腰梯形ABCD的周長等于

[  ]

A.15cm
B.20cm
C.30cm
D.60cm
答案:D
解析:

此題主要考查切線長定理和梯形的中位線定理,由切線長定理知:ABCD的周長為2(ADBC),由中位線定理知ADBC=2EF,其周長為4EF=60cm,故選D


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

8、有六個等圓按甲,乙,丙三種形式擺放,使相鄰兩圓相互外切,如圖所示,它們的連心線分別構(gòu)成正六邊形,平行四邊形和正三角形,將圓心連線外側(cè)的6個扇形(陰影部分)的面積之和依次記為S,P,Q,則(  )

查看答案和解析>>

科目:初中數(shù)學 來源:第26章《圓》中考題集(79):26.9 弧長與扇形面積(解析版) 題型:選擇題

有六個等圓按甲,乙,丙三種形式擺放,使相鄰兩圓相互外切,如圖所示,它們的連心線分別構(gòu)成正六邊形,平行四邊形和正三角形,將圓心連線外側(cè)的6個扇形(陰影部分)的面積之和依次記為S,P,Q,則( )

A.S>P>Q
B.S>Q>P
C.S>P且S=Q
D.S=P=Q

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圓》(05)(解析版) 題型:選擇題

(2006•遵義)有六個等圓按甲,乙,丙三種形式擺放,使相鄰兩圓相互外切,如圖所示,它們的連心線分別構(gòu)成正六邊形,平行四邊形和正三角形,將圓心連線外側(cè)的6個扇形(陰影部分)的面積之和依次記為S,P,Q,則( )

A.S>P>Q
B.S>Q>P
C.S>P且S=Q
D.S=P=Q

查看答案和解析>>

科目:初中數(shù)學 來源:2006年寧夏中考數(shù)學試卷(課標卷)(解析版) 題型:選擇題

(2006•遵義)有六個等圓按甲,乙,丙三種形式擺放,使相鄰兩圓相互外切,如圖所示,它們的連心線分別構(gòu)成正六邊形,平行四邊形和正三角形,將圓心連線外側(cè)的6個扇形(陰影部分)的面積之和依次記為S,P,Q,則( )

A.S>P>Q
B.S>Q>P
C.S>P且S=Q
D.S=P=Q

查看答案和解析>>

科目:初中數(shù)學 來源:2002年浙江省舟山市中考數(shù)學試卷(解析版) 題型:選擇題

(2006•遵義)有六個等圓按甲,乙,丙三種形式擺放,使相鄰兩圓相互外切,如圖所示,它們的連心線分別構(gòu)成正六邊形,平行四邊形和正三角形,將圓心連線外側(cè)的6個扇形(陰影部分)的面積之和依次記為S,P,Q,則( )

A.S>P>Q
B.S>Q>P
C.S>P且S=Q
D.S=P=Q

查看答案和解析>>

同步練習冊答案