【題目】如圖,在矩形ABCD中,AB=2,BC=10,E、F分別在邊BC,AD上,BE=DF.將△ABE,△CDF分別沿著AE,CF翻折后得到△AGE,△CHF.若AG、CH分別平分∠EAD、∠FCB,則GH長為( )
A.3B.4C.5D.7
【答案】B
【解析】
如圖作GM⊥AD于M交BC于N,作HT⊥BC于T.通過解直角三角形求出AM、GM的長,同理可得HT、CT的長,再通過證四邊形ABNM為矩形得MN=AB=2,BN=AM=3,最后證四邊形GHTN為平行四邊形可得GH=TN即可解決問題.
解:如圖作GM⊥AD于M交BC于N,作HT⊥BC于T.
∵△ABE沿著AE翻折后得到△AGE,
∴∠GAM=∠BAE,AB=AG=2,
∵AG分別平分∠EAD,
∴∠BAE=∠EAG,
∵∠BAD=90°,
∴∠GAM=∠BAE=∠EAG=30°,
∵GM⊥AD,
∴∠AMG=90°,
∴在Rt△AGM中,sin∠GAM=,cos∠GAM=,
∴GM=AGsin30°=,AM=AGcos30°=3,
同理可得HT=,CT=3,
∵∠AMG=∠B=∠BAD=90°,
∴四邊形ABNM為矩形,
∴MN=AB=2,BN=AM=3,
∴GN=MN﹣GM=,
∴GN=HT,
又∵GN∥HT,
∴四邊形GHTN是平行四邊形,
∴GH=TN=BC﹣BN﹣CT=10﹣3﹣3=4,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與軸、軸相交于、兩點,拋物線過點、,且與軸另一個交點為,以、為邊作矩形,交拋物線于點.
(1)求拋物線的解析式以及點的坐標;
(2)已知直線交于點,交于點,交于點,交拋物線(上方部分)于點,請用含的代數(shù)式表示的長;
(3)在(2)的條件下,連接,若和相似,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形的邊長為,點在邊上,連接,過點作,與的延長線相交于點,連接,與邊相交于點,與對角線相交于點.若,則的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,一次函數(shù)y=x+3與x軸、y軸分別交于點A、B,將直線AB向下平移與反比例函數(shù)(x>0)交于點C、D,連接BC交x軸于點E,連接AC,已知BE=3CE,且S△ACE=.
(1)求直線BC和反比例函數(shù)解析式;(2)連接BD,求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線過點.
(1)若點也在該拋物線上,請用含的關(guān)系式表示;
(2)若該拋物線上任意不同兩點、都滿足:當時,;當時,;若以原點為圓心,為半徑的圓與拋物線的另兩個交點為、(點在點左側(cè)),且有一個內(nèi)角為,求拋物線的解析式;
(3)在(2)的條件下,若點與點關(guān)于點對稱,且、、三點共線,求證:平分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,M、N分別是邊AD、BC邊上的中點,且△ABM≌△DCM;E、F分別是線段BM、CM的中點.
(1)求證:平行四邊形ABCD是矩形.
(2)求證:EF與MN互相垂直.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,為坐標原點,直線交軸負半軸)軸正半軸于兩點, 的面積為4.5;
如圖1.求的值;
如圖2.在軸負半軸上取點.點在第一象限,連接,過點作交的延長線于點,若,求的值;
如圖3,在的條件下.交軸于點軸交的延長線于點,設與軸交于點,連接,當時,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com