【題目】如圖,直線AB,CD相交于點(diǎn)O,過點(diǎn)O作兩條射線OM,ON,且∠AOM=∠CON=90°.
(1)若OC平分∠AOM,求∠AOD的度數(shù);
(2)若∠1=∠BOC,求∠AOC和∠MOD.
【答案】(1)135°(2)150°
【解析】
①根據(jù)角平分線定義求出∠1=∠AOC=45°,代入∠AOD=180°-∠AOC求出即可;
②求出∠BOM=180°-90°=90°,根據(jù)∠1=∠BOC求出∠1=∠BOM=30°,即可求出答案.
(1)因?yàn)椤螦OM=∠CON=90°,OC平分∠AOM,所以∠1=∠AOC=45°,所以∠AOD=180°-∠AOC=180°-45°=135°.
(2)因?yàn)椤螦OM=90°,所以∠BOM=180°-90°=90°.因?yàn)椤?=∠BOC,所以∠1=∠BOM=30°,所以∠AOC=90°-30°=60°,∠MOD=180°-30°=150°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點(diǎn)D,點(diǎn)P是BA延長線上一點(diǎn),點(diǎn)O是線段AD上一點(diǎn),OP=OC.
(1)求∠APO+∠DCO的度數(shù);
(2)求證:點(diǎn)P在OC的垂直平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC經(jīng)過一次平移到△DFE的位置,請回答下列問題:
(1)點(diǎn)C的對應(yīng)點(diǎn)是點(diǎn)__________,∠D=__________,BC=__________;
(2)連接CE,那么平移的方向就是__________的方向,平移的距離就是線段__________的長度;
(3)連接AD,BF,BE,與線段CE相等的線段有__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】深圳市某學(xué)校抽樣調(diào)查,A類學(xué)生騎共享單車,B類學(xué)生坐公交車、私家車等,C類學(xué)生步行,D類學(xué)生(其它),根據(jù)調(diào)查結(jié)果繪制了不完整的統(tǒng)計(jì)圖.
類型 | 頻數(shù) | 頻率 |
A | 30 | |
B | 18 | 0.15 |
C | 0.40 | |
D |
(1)學(xué)生共人, , ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有2000人,騎共享單車的有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鍛煉學(xué)生身體素質(zhì),訓(xùn)練定向越野技能,某校在一公園內(nèi)舉行定向越野挑戰(zhàn)賽.路線圖如圖1所示,點(diǎn)E為矩形ABCD邊AD的中點(diǎn),在矩形ABCD的四個(gè)頂點(diǎn)處都有定位儀,可監(jiān)測運(yùn)動(dòng)員的越野進(jìn)程,其中一位運(yùn)動(dòng)員P從點(diǎn)B出發(fā),沿著B﹣E﹣D的路線勻速行進(jìn),到達(dá)點(diǎn)D.設(shè)運(yùn)動(dòng)員P的運(yùn)動(dòng)時(shí)間為t,到監(jiān)測點(diǎn)的距離為y.現(xiàn)有y與t的函數(shù)關(guān)系的圖象大致如圖2所示,則這一信息的來源監(jiān)測點(diǎn)為( )
A.A點(diǎn)
B.B點(diǎn)
C.C點(diǎn)
D.D點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】概念學(xué)習(xí)
規(guī)定:如果一個(gè)三角形的三個(gè)角分別等于另一個(gè)三角形的三個(gè)角,那么稱這兩個(gè)三角形互為“等角三角形”.
從三角形不是等腰三角形一個(gè)頂點(diǎn)引出一條射線與對邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原來三角形是“等角三角形”,我們把這條線段叫做這個(gè)三角形的“等角分割線”.
理解概念
如圖1,在中,,,請寫出圖中兩對“等角三角形”概念應(yīng)用
如圖2,在中,CD為角平分線,,.
求證:CD為的等角分割線.
在中,,CD是的等角分割線,直接寫出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,茬四邊形ABCD中,AD∥BC,E是BC的中點(diǎn),AC平分∠BCD,且AC⊥AB,接DE,交AC于F.
(1)求證:AD=CE;
(2)若∠B=60°,試確定四邊形ABED是什么特殊四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a>b,請用“>”或“<”填空:
(1)a-1________b-1;(2)a________b;(3)a+c________b+c;(4)-3a________-3b;(5)-a-c________-b-c.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com