(2013年四川廣安10分)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點(diǎn),已知點(diǎn)A(﹣3,0),B(0,3),C(1,0).
(1)求此拋物線的解析式.
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PD⊥AB于點(diǎn)D.
①動(dòng)點(diǎn)P在什么位置時(shí),△PDE的周長最大,求出此時(shí)P點(diǎn)的坐標(biāo);
②連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)M或N恰好落在拋物線對(duì)稱軸上時(shí),求出對(duì)應(yīng)的P點(diǎn)的坐標(biāo).(結(jié)果保留根號(hào))
解:(1)∵拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(0,3),C(1,0),
∴,解得。
∴拋物線的解析式為y=﹣x2﹣2x+3。
(2)①∵A(﹣3,0),B(0,3),∴OA=OB=3!唷鰽OB是等腰直角三角形!唷螧AO=45°。
∵PF⊥x軸,∴∠AEF=90°﹣45°=45°。
又∵PD⊥AB,∴△PDE是等腰直角三角形!郟D越大,△PDE的周長越大。
易得直線AB的解析式為y=x+3,
設(shè)與AB平行的直線解析式為y=x+m,
聯(lián)立,消掉y得,x2+3x+m﹣3=0,
當(dāng)△=32﹣4×1×(m﹣3)=0,即m=時(shí),直線與拋物線只有一個(gè)交點(diǎn),PD最長,
此時(shí)x=,y=+=,
∴點(diǎn)P(,)時(shí),△PDE的周長最大。
②拋物線y=﹣x2﹣2x+3的對(duì)稱軸為直線,
(i)如圖1,點(diǎn)M在對(duì)稱軸上時(shí),過點(diǎn)P作PQ⊥對(duì)稱軸于Q,
在正方形APMN中,AP=PM,∠APM=90°,
∴∠APF+∠FPM=90°,∠QPM+∠FPM=90°。
∴∠APF=∠QPM。
∵在△APF和△MPQ中,,∴△APF≌△MPQ(AAS)!郟F=PQ。
設(shè)點(diǎn)P的橫坐標(biāo)為n(n<0),則PQ=﹣1﹣n,即PF=﹣1﹣n,∴點(diǎn)P的坐標(biāo)為(n,﹣1﹣n)。
∵點(diǎn)P在拋物線y=﹣x2﹣2x+3上,∴﹣n2﹣2n+3=﹣1﹣n,整理得,n2+n﹣4=0。
解得n1=(舍去),n2=,﹣1﹣n=﹣1﹣=,
∴點(diǎn)P的坐標(biāo)為(,)。
(ii)如圖2,點(diǎn)N在對(duì)稱軸上時(shí),設(shè)拋物線對(duì)稱軸與x軸交于點(diǎn)Q,
∵∠PAF+∠FPA=90°,∠PAF+∠QAN=90°,∴∠FPA=∠QAN。
又∵∠PFA=∠AQN=90°,PA=AN,∴△APF≌△NAQ。
∴PF=AQ。
設(shè)點(diǎn)P坐標(biāo)為P(x,﹣x2﹣2x+3),
則有﹣x2﹣2x+3=﹣1﹣(﹣3)=2,
解得x=(不合題意,舍去)或x=。
∴點(diǎn)P坐標(biāo)為(,2)。
綜上所述,當(dāng)頂點(diǎn)M恰好落在拋物線對(duì)稱軸上時(shí),點(diǎn)P坐標(biāo)為(,),當(dāng)頂點(diǎn)N恰好落在拋物線對(duì)稱軸上時(shí),點(diǎn)P的坐標(biāo)為(,2)。
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
一汽車租賃公司擁有某種型號(hào)的汽車100輛.公司在經(jīng)營中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:
x | 3000 | 3200 | 3500 | 4000 |
y | 100 | 96 | 90 | 80 |
租出的車輛數(shù) | | 未租出的車輛數(shù) | |
租出每輛車的月收益 | | 所有未租出的車輛每月的維護(hù)費(fèi) | |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).
(1)求拋物線的解析式及它的對(duì)稱軸方程;
(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;
(3)試判斷△AOC與△COB是否相似?并說明理由;
(4)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若不存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年浙江義烏10分)為迎接中國森博會(huì),某商家計(jì)劃從廠家采購A,B兩種產(chǎn)品共20件,產(chǎn)品的采購單價(jià)(元/件)是采購數(shù)量(件)的一次函數(shù).下表提供了部分采購數(shù)據(jù).
采購數(shù)量(件) | 1 | 2 | … |
A產(chǎn)品單價(jià)(元/件) | 1480 | 1460 | … |
B產(chǎn)品單價(jià)(元/件) | 1290 | 1280 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形ABCD是菱形,對(duì)角線AC與BD交于點(diǎn)O,且AC=80,BD=60.動(dòng)點(diǎn)M、N分別以每秒1個(gè)單位的速度從點(diǎn)A、D同時(shí)出發(fā),分別沿A→O→D和D→A運(yùn)動(dòng),當(dāng)點(diǎn)N到達(dá)點(diǎn)A時(shí),M、N同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求菱形ABCD的周長;
(2)記△DMN的面積為S,求S關(guān)于t的解析式,并求S的最大值;
(3)當(dāng)t=30秒時(shí),在線段OD的垂直平分線上是否存在點(diǎn)P,使得∠DPO=∠DON?若存在,這樣的點(diǎn)P有幾個(gè)?并求出點(diǎn)P到線段OD的距離;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
直線與x、y軸分別交于點(diǎn)A、C.拋物線的圖象經(jīng)過A、C和點(diǎn)B(1,0).
(1)求拋物線的解析式;
(2)在直線AC上方的拋物線上有一動(dòng)點(diǎn)D,當(dāng)D與直線AC的距離DE最大時(shí),求出點(diǎn)D的坐標(biāo),并求出最大距離是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣2 與x軸交于點(diǎn)A(﹣1,0)、B(4,0).點(diǎn)M、N在x軸上,點(diǎn)N在點(diǎn)M右側(cè),MN=2.以MN為直角邊向上作等腰直角三角形CMN,∠CMN=90°.設(shè)點(diǎn)M的橫坐標(biāo)為m.
(1)求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式.
(2)求點(diǎn)C在這條拋物線上時(shí)m的值.
(3)將線段CN繞點(diǎn)N逆時(shí)針旋轉(zhuǎn)90°后,得到對(duì)應(yīng)線段DN.
①當(dāng)點(diǎn)D在這條拋物線的對(duì)稱軸上時(shí),求點(diǎn)D的坐標(biāo).
②以DN為直角邊作等腰直角三角形DNE,當(dāng)點(diǎn)E在這條拋物線的對(duì)稱軸上時(shí),直接寫出所有符合條件的m值.
(參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某市對(duì)火車站進(jìn)行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動(dòng)打印車票的無人售票窗口.某日,從早8點(diǎn)開始到上午11點(diǎn),每個(gè)普通售票窗口售出的車票數(shù)y1(張)與售票時(shí)間x(小時(shí))的正比例函數(shù)關(guān)系滿足圖①中的圖象,每個(gè)無人售票窗口售出的車票數(shù)y2(張)與售票時(shí)間x(小時(shí))的函數(shù)關(guān)系滿足圖②中的圖象.
(1)圖②中圖象的前半段(含端點(diǎn))是以原點(diǎn)為頂點(diǎn)的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達(dá)式為 ,其中自變量x的取值范圍是 ;
(2)若當(dāng)天共開放5個(gè)無人售票窗口,截至上午9點(diǎn),兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個(gè)普通售票窗口?
(3)上午10點(diǎn)時(shí),每個(gè)普通售票窗口與每個(gè)無人售票窗口售出的車票數(shù)恰好相同,試確定圖②中圖象的后半段一次函數(shù)的表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com