【題目】如圖,在菱形紙片ABCD中,對(duì)角線AC、BD長(zhǎng)分別為1612,折疊紙片使點(diǎn)A落在DB上,折痕交AC于點(diǎn)P,則DP的長(zhǎng)為( 。

A. 3B. C. 3D. 3

【答案】A

【解析】

首先設(shè)O點(diǎn)的對(duì)應(yīng)點(diǎn)為E,連接PE,由菱形的性質(zhì),可求得ODOAAD的長(zhǎng),由折疊的性質(zhì),根據(jù)勾股定理可得方程:即(8-x2=42+x2,可求x的值,由勾股定理可求DP的長(zhǎng).

解:設(shè)O點(diǎn)的對(duì)應(yīng)點(diǎn)為E,連接PE,

由折疊的性質(zhì)可得:PE=OPDE=OD,
∵四邊形ABCD是菱形,

設(shè)OP=x,則PE=x,AE=AD-DE=10-6=4,AP=OA-OP=8-x,
RtAPE中,AP2=AE2+PE2,
即(8-x2=42+x2,
解得:x=3,
OP=3

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E與點(diǎn)F分別在線段AC、BC上,且四邊形DEFG是正方形。

(1)求證AE=CG,并說(shuō)明理由。

(2)連接AG,若AB=17,DG=13,求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于的一元二次方程的兩個(gè)實(shí)數(shù)根的平方和為,那么的值是(

A. 5 B. -1 C. 5-1 D. -51

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為增強(qiáng)身體素質(zhì),小明每天早上堅(jiān)持沿著小區(qū)附近的矩形公園ABCD練習(xí)跑步,爸爸站在的某一個(gè)固定點(diǎn)處負(fù)責(zé)進(jìn)行計(jì)時(shí)指導(dǎo)。假設(shè)小明在矩形公園ABCD的邊上沿著A→B→C→D→A的方向跑步一周,小明跑步的路程為x,小明與爸爸之間的距離為y.yx之間的函數(shù)關(guān)系如圖2所示,則爸爸所在的位置可能為圖1( )

A. D點(diǎn)B. M點(diǎn)C. O點(diǎn)D. N點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:AF=DC;

(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論;

(3)在(2)的條件下,要使四邊形ADCF為正方形,在△ABC中應(yīng)添加什么條件,請(qǐng)直接把補(bǔ)充條件寫(xiě)在橫線上 (不需說(shuō)明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(m+2x+2m0

1)求證:不論m為何值,該方程總有兩個(gè)實(shí)數(shù)根;

2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求出以此兩根為邊長(zhǎng)的直角角形的周長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于的一元二次方程.

1)求證:方程總有兩個(gè)實(shí)數(shù)根;

2)若方程有一根小于1,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】5張不透明的卡片,除正面上的圖案不同外,其他均相同.將這5張卡片背面向上洗勻后放在桌面上.

1)從中隨機(jī)抽取1張卡片,卡片上的圖案是中心對(duì)稱(chēng)圖形的概率為_____

2)若從中隨機(jī)抽取1張卡片后不放回,再隨機(jī)抽取1張,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求兩次所抽取的卡片恰好都是軸對(duì)稱(chēng)圖形的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠B30°,AC2,E為斜邊AB的中點(diǎn),點(diǎn)P是射線BC上的一個(gè)動(dòng)點(diǎn),連接AP、PE,將△AEP沿著邊PE折疊,折疊后得到△EPA′,當(dāng)折疊后△EPA′與△BEP的重疊部分的面積恰好為△ABP面積的四分之一,則此時(shí)BP的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案