如圖,湖中的小島上有一標志性建筑物,其底部為A,某人在岸邊的B處測得A在B的北偏東30°的方向上,然后沿岸邊直行4公里到達C處,再次測得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求這個標志性建筑物底部A到岸邊BC的最短距離.
這個標志性建筑物底部A到岸邊BC的最短距離為(6﹣2)公里

試題分析:要求這個標志性建筑物底部A到岸邊BC的最短距離也就是要求出點A到直線BC的最短距離,過點A作AD⊥BC于D,然后利用所給條件求出AD的長即可
試題解析:過A作AD⊥BC于D,則AD的長度就是A到岸邊BC的最短距離.

在Rt△ACD中,∠ACD=45°,設(shè)AD=x,則CD=AD=x,
在Rt△ABD中,∠ABD=60°,
由tan∠ABD=,即tan60°=,
所以BD==x,
又BC=4,即BD+CD=4,所以x+x=4,
解得x=6﹣2
答:這個標志性建筑物底部A到岸邊BC的最短距離為(6﹣2)公里.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

“馬航事件”的發(fā)生引起了我國政府的高度重視,迅速派出了艦船和飛機到相關(guān)海域進行搜尋.如圖,在一次空中搜尋中,水平飛行的飛機觀測得在點A俯角為30°方向的F點處有疑似飛機殘骸的物體(該物體視為靜止).為了便于觀察,飛機繼續(xù)向前飛行了800米到達B點,此時測得點F在點B俯角為45°的方向上,請你計算當飛機飛臨F點的正上方點C時(點A、B、C在同一直線上),豎直高度CF約為多少米?(結(jié)果保留整數(shù),參考數(shù)值:≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,有小島A和小島B,輪船以45km/h的速度由C向東航行,在C處測得A的方位角為北偏東60°,測得B的方位角為南偏東45°,輪船航行2小時后到達小島B處,在B處測得小島A在小島B的正北方向.求小島A與小島B之間的距離(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.41,≈2.45)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

根據(jù)道路管理規(guī)定,在羲皇大道秦州至麥積段上行駛的車輛,限速60千米/時.已知測速站點M距羲皇大道l(直線)的距離MN為30米(如圖所示).現(xiàn)有一輛汽車由秦州向麥積方向勻速行駛,測得此車從A點行駛到B點所用時間為6秒,∠AMN=60°,∠BMN=45°.
(1)計算AB的長度.
(2)通過計算判斷此車是否超速.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

將兩塊全等的三角板如圖①擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖①中的△A1B1C順時針旋轉(zhuǎn)45°得圖②,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖②中,若AP1=2,則CQ等于多少?
(3)如圖③,在B1C上取一點E,連接BE、P1E,設(shè)BC=1,當BE⊥P1B時,求△P1BE面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在東西方向的海岸線l上有一長為1千米的碼頭MN,在碼頭西端M的正西方向30 千米處有一觀察站O.某時刻測得一艘勻速直線航行的輪船位于O的北偏西30°方向,且與O相距千米的A處;經(jīng)過40分鐘,又測得該輪船位于O的正北方向,且與O相距20千米的B處.
(1)求該輪船航行的速度;
(2)如果該輪船不改變航向繼續(xù)航行,那么輪船能否正好行至碼頭MN靠岸?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

己知平頂屋面(截面為等腰三角形)的寬度l和坡頂?shù)脑O(shè)計傾角α(如圖),則設(shè)計高度h為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,在△ABC中,已知c=
3
,∠A=45°,∠B=60°,則a的值是(  )
A.3-
3
B.3
3
-3
C.
3
-1
D.5-
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

同學們對公園的滑梯很熟悉吧!如圖是某公園新增設(shè)的一臺滑梯,該滑梯高度AC=2米, 滑梯AB的坡比是1:2(即AC:BC=1:2),則滑梯AB的長是            米.  

查看答案和解析>>

同步練習冊答案