【題目】定義:

數(shù)學(xué)活動(dòng)課上,李老師給出如下定義:如果一個(gè)三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點(diǎn),請(qǐng)?jiān)趫A上找出滿足條件的點(diǎn),使智慧三角形(畫(huà)出點(diǎn)的位置,保留作圖痕跡);

如圖,在正方形中,的中點(diǎn),上一點(diǎn),且,試判斷是否為智慧三角形,并說(shuō)明理由;

運(yùn)用:

如圖,在平面直角坐標(biāo)系中,的半徑為,點(diǎn)是直線上的一點(diǎn),若在上存在一點(diǎn),使得智慧三角形,當(dāng)其面積取得最小值時(shí),直接寫(xiě)出此時(shí)點(diǎn)的坐標(biāo).

【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)P的坐標(biāo)(﹣,),(,).

【解析】試題分析:(1)連結(jié)AO并且延長(zhǎng)交圓于C1,連結(jié)BO并且延長(zhǎng)交圓于C2,即可求解;(2)設(shè)正方形的邊長(zhǎng)為4a,表示出DF=CF以及EC、BE的長(zhǎng),然后根據(jù)勾股定理列式表示出AF2、EF2、AE2,再根據(jù)勾股定理逆定理判定AEF是直角三角形,由直角三角形的性質(zhì)可得AEF為智慧三角形;(3)根據(jù)智慧三角形的定義可得OPQ為直角三角形,根據(jù)題意可得一條直角邊為1,當(dāng)斜邊最短時(shí),另一條直角邊最短,則面積取得最小值,由垂線段最短可得斜邊最短為3,根據(jù)勾股定理可求另一條直角邊,再根據(jù)三角形面積可求斜邊的高,即點(diǎn)P的橫坐標(biāo),再根據(jù)勾股定理可求點(diǎn)P的縱坐標(biāo),從而求解.

試題解析:

(1)如圖1所示:

(2)AEF是否為“智慧三角形”,

理由如下:設(shè)正方形的邊長(zhǎng)為4a,

E是DC的中點(diǎn),

DE=CE=2a,

BC:FC=4:1,

FC=a,BF=4a﹣a=3a,

在RtADE中,AE2=(4a)2+(2a)2=20a2,

在RtECF中,EF2=(2a)2+a2=5a2,

在RtABF中,AF2=(4a)2+(3a)2=25a2,

AE2+EF2=AF2,

∴△AEF是直角三角形,

斜邊AF上的中線等于AF的一半,

∴△AEF為“智慧三角形”;

(3)如圖3所示:

由“智慧三角形”的定義可得OPQ為直角三角形,

根據(jù)題意可得一條直角邊為1,當(dāng)斜邊最短時(shí),另一條直角邊最短,則面積取得最小值,

由垂線段最短可得斜邊最短為3,

由勾股定理可得PQ=,

PM=1×2÷3=,

由勾股定理可求得OM=,

故點(diǎn)P的坐標(biāo)(﹣,),(,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道“對(duì)于實(shí)數(shù)m,n,k,若mn,nk,則mk”,即相等關(guān)系具有傳遞性.小敏由此進(jìn)行聯(lián)想,提出了下列命題:

a,b,c是直線,若ab,bc,則ac

a,b,c是直線,若ab,bc,則ac

若∠α與∠β互余,∠β與∠γ互余,則∠α與∠γ互余.

其中正確的命題是(  )

A.B.①②C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列選項(xiàng)中,可以用來(lái)證明命題“若a2>1,則a>1”是假命題的反例是(
A.a=﹣2
B.a=﹣1
C.a=1
D.a=2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠B=32°,∠C =48°,AD⊥BC于點(diǎn)D,AE平分∠BAC交BC于點(diǎn)E,DF⊥AE于點(diǎn)F,求∠ADF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,以為直徑的與邊分別交于兩點(diǎn),過(guò)點(diǎn),垂足為點(diǎn).

求證:的切線;

,求的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ACB=90°,點(diǎn)D,E分別在AC,BC上,且CDE=B,將CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.若AC=8,AB=10,則CD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華文化,源遠(yuǎn)流長(zhǎng),在文學(xué)方面,《西游記》、《三國(guó)演義》、《水滸傳》、《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說(shuō)中的典型代表,被稱為“四大古典名著”,某中學(xué)為了了解學(xué)生對(duì)四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問(wèn)題做法全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制城如圖所示的兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解決下列問(wèn)題:

(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是 部,中位數(shù)是 部,扇形統(tǒng)計(jì)圖中“1部”所在扇形的圓心角為 度.

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)沒(méi)有讀過(guò)四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來(lái)閱讀,則他們選中同一名著的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正比例函數(shù)y=3x的圖象與反比例函數(shù)y= 的圖象交于點(diǎn)A(1,m)和點(diǎn)B.

(1)求m的值和反比例函數(shù)的解析式.
(2)觀察圖象,直接寫(xiě)出使正比例函數(shù)的值大于反比例函數(shù)的值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠有甲種原料,乙種原料,現(xiàn)用兩種原料生產(chǎn)處兩種產(chǎn)品共件,已知生產(chǎn)每件產(chǎn)品需甲種原料,乙種原料,且每件產(chǎn)品可獲得元;生產(chǎn)每件產(chǎn)品甲種原料,乙種原料,且每件產(chǎn)品可獲利潤(rùn)元,設(shè)生產(chǎn)產(chǎn)品 件(產(chǎn)品件數(shù)為整數(shù)件),根據(jù)以上信息解答下列問(wèn)題:

(1)生產(chǎn)兩種產(chǎn)品的方案有哪幾種?

(2)設(shè)生產(chǎn)這件產(chǎn)品可獲利元,寫(xiě)出關(guān)于的函數(shù)解析式,寫(xiě)出(1)中利潤(rùn)最大的方案,并求出最大利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案