如圖,直線MN與x軸,y軸分別相交于A,C兩點(diǎn),分別過A,C兩點(diǎn)作x軸,y軸的垂線相交于B點(diǎn),且OA,OC(OA>OC)的長分別是一元二次方程x2﹣14x+48=0的兩個(gè)實(shí)數(shù)根.
(1)求C點(diǎn)坐標(biāo);
(2)求直線MN的解析式;
(3)在直線MN上存在點(diǎn)P,使以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形,請直接寫出P點(diǎn)的坐標(biāo).
(1)C(0,6);(2)y=-x+6;(3)P1(4,3),P2(-,),P3(,),P4(,-).
解析試題分析:
(1)通過解方程x2﹣14x+48=0可以求得OC=6,OA=8.則C(0,6);
(2)設(shè)直線MN的解析式是y=kx+b(k≠0).把點(diǎn)A、C的坐標(biāo)分別代入解析式,列出關(guān)于系數(shù)k、b的方程組,通過解方程組即可求得它們的值;
(3)需要分類討論:PB為腰,PB為底兩種情況下的點(diǎn)P的坐標(biāo).根據(jù)等腰三角形的性質(zhì)、兩點(diǎn)間的距離公式以及一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征進(jìn)行解答.
試題解析:
(1)解方程x2-14x+48=0得
x1=6,x2=8
∵OA,OC(OA>OC)的長分別是一元二次方程x2-14x+48=0的兩個(gè)實(shí)數(shù)根
∴OC=6,OA=8
∴C(0,6)
(2)設(shè)直線MN的解析式是y=kx+b(k≠0)
由(1)知,OA=8,則A(8,0)
∵點(diǎn)A、C都在直線MN上
∴
解得,
∴直線MN的解析式為y=-x+6
(3)
∵A(8,0),C(0,6)
∴根據(jù)題意知B(8,6)
∵點(diǎn)P在直線MN y=-x+6上
∴設(shè)P(a,--a+6)
當(dāng)以點(diǎn)P,B,C三點(diǎn)為頂點(diǎn)的三角形是等腰三角形時(shí),需要分類討論:
①當(dāng)PC=PB時(shí),點(diǎn)P是線段BC的中垂線與直線MN的交點(diǎn),則P1(4,3);
②當(dāng)PC=BC時(shí),a2+(-a+6-6)2=64
解得,a=±,則P2(-,),P3(,)
③當(dāng)PB=BC時(shí),(a-8)2+(-a+6-6)2=64
解得,a=,則-a+6=-
∴P4(,)
綜上所述,符合條件的點(diǎn)P有:P1(4,3),P2(-,),P3(,),P4(,-)
考點(diǎn):一次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,一次函數(shù)y1=x+1的圖象與反比例函數(shù)(k為常數(shù),且)的圖象都經(jīng)過點(diǎn)A(m,2).
(1)求點(diǎn)A的坐標(biāo)及反比例函數(shù)的解析式;
(2)觀察圖象,當(dāng)x>0時(shí),直接寫出y1與y2的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某食品加工廠需要一批食品包裝盒,供應(yīng)這種包裝盒有兩種方案可供選擇:
方案1:從包裝盒加工廠直接購買,購買所需的費(fèi)用y1與包裝盒數(shù)x滿足如圖的函數(shù)關(guān)系。
方案2:租憑機(jī)器自己加工,所需費(fèi)用y2(包括租憑機(jī)器的費(fèi)用和生產(chǎn)包裝盒的費(fèi)用)
與包裝盒數(shù)滿足如圖的函數(shù)關(guān)系。
根據(jù)圖象回答下列問題:
(1)方案1中每個(gè)包裝盒的價(jià)格是多少元?
(2)方案2中租憑機(jī)器的費(fèi)用是多少元?生產(chǎn)一個(gè)包裝盒的費(fèi)用是多少元?
(3)請分別求出y1,y2,與x的函數(shù)表達(dá)式
(4)如果你是決策者,你認(rèn)為應(yīng)該選擇哪種方案更省錢?并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知y1與x成正比例,y2與x+2成正比例,且y=y1+y2,當(dāng)x=2時(shí),y=4;當(dāng)x=-1時(shí),y=7,求y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某校實(shí)行學(xué)案式教學(xué),需印制若干份數(shù)學(xué)學(xué)案。印刷廠有甲、乙兩種收費(fèi)方式,除按印數(shù)收取印刷費(fèi)外,甲種方式還需收取制版費(fèi)而乙種不需要。兩種印刷方式的費(fèi)用y(元)與印刷份數(shù)x(份)之間的函數(shù)關(guān)系如圖所示:
(1)填空:甲種收費(fèi)方式的函數(shù)關(guān)系式是 .
乙種收費(fèi)方式的函數(shù)關(guān)系式是 .
(2)該校某年級每次需印制100~450(含100和450)份學(xué)案,選擇哪種印刷方式較合算。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩地之間有一條筆直的公路L,小明從甲地出發(fā)沿公路ι步行前往乙地,同時(shí)小亮從乙地出發(fā)沿公路L騎自行車前往甲地,小亮到達(dá)甲地停留一段時(shí)間,原路原速返回,追上小明后兩人一起步行到乙地.設(shè)小明與甲地的距離為y1米,小亮與甲地的距離為y2米,小明與小亮之間的距離為s米,小明行走的時(shí)間為x分鐘.y1、y2與x之間的函數(shù)圖象如圖1,s與x之間的函數(shù)圖象(部分)如圖2.
(1)求小亮從乙地到甲地過程中y1(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(2)求小亮從甲地返回到與小明相遇的過程中s(米)與x(分鐘)之間的函數(shù)關(guān)系式;
(3)在圖2中,補(bǔ)全整個(gè)過程中s(米)與x(分鐘)之間的函數(shù)圖象,并確定a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某生物小組觀察一植物生長,得到植物高度y(單位:厘米)與觀察時(shí)間x(單位:天)的關(guān)系,并畫出如圖所示的圖象(AC是線段,直線CD平行x軸).
(1)該植物從觀察時(shí)起,多少天以后停止長高?
(2)求直線AC的解析式,并求該植物最高長多少厘米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
華聯(lián)超市欲購進(jìn)A、B兩種品牌的書包共400個(gè)。已知兩種書包的進(jìn)價(jià)和售價(jià)如下表所示。設(shè)購進(jìn)A種書包x個(gè),且所購進(jìn)的兩種書包能全部賣出,獲得的總利潤為w元。
(1)求w關(guān)于x的函數(shù)關(guān)系式;
(2)如果購進(jìn)兩種書包的總費(fèi)不超過18000元,那么該商場如何進(jìn)貨才能獲得最大利潤?并求出最大利潤。
(提示利潤= 售價(jià)-進(jìn)價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
為提醒人們節(jié)約用水,及時(shí)修好漏水的水龍頭.兩名同學(xué)分別做了水龍頭漏水實(shí)驗(yàn),他們用于接水的量筒最大容量為100毫升.
實(shí)驗(yàn)一:小王同學(xué)在做水龍頭漏水實(shí)驗(yàn)時(shí),每隔10秒觀察量筒中水的體積,記錄的數(shù)據(jù)如表(漏出的水量精確到1毫升):
時(shí)間t(秒) | 10 | 20 | 30 | 40 | 50 | 60 | 70 |
漏出的水量V(毫升) | 2 | 5 | 8 | 11 | 14 | 17 | 20 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com