【題目】已知二次函數(shù)y=-x2-2x+3.

(1)將其配方成y=a(x-k)2+h的形式,并寫出它的開口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo).

(2)在平面直角坐標(biāo)系中畫出函數(shù)的圖象,并觀察圖象,當(dāng)y≥0時(shí),x的取值范圍.

【答案】(1)y=-(x+1)2+4;開口向下,對(duì)稱軸是直線x=-1,頂點(diǎn)坐標(biāo)為(-1,4);(2)圖像見解析;y≥0時(shí),-3≤x≤1.

【解析】

(1)根據(jù)題目中的函數(shù)解析式,利用配方法可以將題目中的函數(shù)解析式化為y=a(x-k)2+h的形式,并寫出它的開口方向、對(duì)稱軸及頂點(diǎn)坐標(biāo);

(2)根據(jù)題目中的函數(shù)解析式可以畫出函數(shù)的圖象,并直接寫出當(dāng)y≥0時(shí),x的取值范圍.

(1)二次函數(shù)y=-x2-2x+3=-(x+1)2+4,

故該函數(shù)的開口向下,對(duì)稱軸是直線x=-1,頂點(diǎn)坐標(biāo)為(-1,4);

(2)當(dāng)y=0時(shí),0=-x2-2x+3,得x=-3x=1,

故該函數(shù)的圖象如右圖所示,

當(dāng)y≥0時(shí),x的取值范圍是-3≤x≤1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=8,BC=6,分別以ABBC、CA為一邊向形外作正方形,連接EF、GMND, 設(shè)△AEF,△CGM,△BND的面積分別為,,,則=___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,面積為10的垂直平分線分別交,于點(diǎn),。若點(diǎn)的中點(diǎn),點(diǎn)為線段上一動(dòng)點(diǎn),則周長(zhǎng)的最小值為______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,點(diǎn)E、FBD上,且DF=BE=1,四邊形AECF的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的對(duì)角線相交于點(diǎn),.

1)求證:四邊形是菱形;

2)若,,求矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,CA=CBCD=CE,∠ACB=DCE

1)求證:BE=AD;

2)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)PQ,連接CP,CQ,PQ,如圖②,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一副直角三角板拼在一起得四邊形ABCD,ACB=45°,ACD=30°,點(diǎn)ECD邊上的中點(diǎn),連接AE,將ADE沿AE所在直線翻折得到AD′E,D′EACF點(diǎn),若AB= 6cm,點(diǎn)D′BC的距離是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù) y=-x+b 與反比例函數(shù)y=(x>0)的圖象交于 A,B 兩點(diǎn),與 x 軸、y軸分別交于C,D 兩點(diǎn),連接 OA,OB,過 A AEx 軸于點(diǎn) E,交 OB 于點(diǎn)F,設(shè)點(diǎn) A 的橫坐標(biāo)為 m. SOAF+S 四邊形 EFBC=4,則 m 的值是( )

A. 1 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是等邊三角形,點(diǎn)邊上一點(diǎn),以為邊作等邊,連接.若,,則

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案