如圖,一位運動員在距籃下4.5米處跳起投籃,籃球運行的路線是拋物線,當(dāng)球運行的水平距離為2.5米時,達(dá)到最高度3.5米,籃筐中心到地面距離為3.05米,建立坐標(biāo)系如圖.該運動員身高1.8米,在這次跳投中,球在頭頂上方0.25米處出手,他跳離地面的高度為0.2米,問這次投籃是否命中,為什么?若不命中,他應(yīng)向前(或向后)移動幾米才能使球準(zhǔn)確命中?
∵籃球運行的路線是拋物線,依題意該拋物線最高點坐標(biāo)為(0,3.5)
∴設(shè)該籃球運行的路線對應(yīng)的函數(shù)解析式為y=ax2+3.5,
依題意該拋物線經(jīng)過(-2.5,2.25),
代入拋物線可得:6.25a+3.5=2.25,
解得:a=-
1
5

則該拋物線解析式為y=-
1
5
x2+3.5

當(dāng)x=2時,y=-
1
5
×4+3.5=2.7≠3.05

故該運動員這次跳投不能命中.
y=-
1
5
(x+h)2+3.5

當(dāng)x=2,y=3.05時,-
1
5
(2+h)2
+3.5=3.05,
解得h1=-0.5,h2=-3.5,
∵|h2|=3.5>2,不合題意,舍去,
∴h=-0.5,即y=-
1
5
(x-0.5)2+3.5
,
∴應(yīng)向前移動0.5米才能投中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.若把拱橋的截面圖放在平面直角坐標(biāo)系中,則兩盞景觀燈之間的水平距離是( 。
A.3mB.4mC.5mD.6m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+4a+c與x軸交于點A、點B,與y軸的正半軸交于點C,點A的坐標(biāo)為(1,0),OB=OC,拋物線的頂點為D.
(1)求此拋物線的解析式;
(2)若此拋物線的對稱軸上的點P滿足∠APB=∠ACB,求點P的坐標(biāo);
(3)在(1)的條件下,對于實數(shù)c、d,我們可用min{c,d}表示c、d兩數(shù)中較小的數(shù),如min{3,-1}=-1.若關(guān)于x的函數(shù)y=min{ax2-4ax+4a+c,m(x-t)2-1(m>0)}的圖象關(guān)于直線x=3對稱,試討論其與動直線y=
1
2
x+n
交點的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx的圖象開口向下,與x軸的一個交點為B,頂點A在直線y=x上,O為坐標(biāo)原點.
(1)證明:△AOB是等腰直角三角形;
(2)若△AOB的外接圓C的半徑為1,求該二次函數(shù)的解析式;
(3)對題(2)中所求出的二次函數(shù),在其圖象上是否存在點P(點P與點A不重合),使得△POC是以PC為腰的等腰三角形,若存在,請求出點P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y=ax2+bx+c與y軸交于點A(0,3),與x軸交于(1,0)(5,0)兩點,若一個動點P自O(shè)A的中點M出發(fā),先到達(dá)x軸上的某點E,再到達(dá)拋物線的對稱軸上某點F,最后運動到點A,則使點P運動的總路徑最短的點E、點F的坐標(biāo)分別是:E______,F(xiàn)______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一條長7.2米的木料,做成如圖所示的“日”字形的窗框,問窗的高和寬各取多少米時,這個窗的面積最大?(不考慮木料加工時損耗和中間木框所占的面積)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角梯形ABCD中,∠C=90°,高CD=6cm(如圖1).動點P,Q同時從點B出發(fā),點P沿BA,AD,DC運動到點C停止,點Q沿BC運動到C點停止.兩點運動時的速度都是1cm/s.而當(dāng)點P到達(dá)點A時,點Q正好到達(dá)點C.設(shè)P,Q同時從點B出發(fā),經(jīng)過的時間為t(s)時,△BPQ的面積為y(cm2)(如圖2).分別以x,y為橫、縱坐標(biāo)建立直角坐標(biāo)系,已知點P在AD邊上從A到D運動時,y與t的函數(shù)圖象是圖3中的線段MN.
(1)分別求出梯形中BA,AD的長度;
(2)寫出圖3中M,N兩點的坐標(biāo);
(3)分別寫出點P在BA邊上和DC邊上運動時,y與t的函數(shù)關(guān)系式(注明自變量的取值范圍),并在答題卷的圖4(放大了的圖3)中補全整個運動中y關(guān)于t的函數(shù)關(guān)系的大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

用總長為32m的籬笆墻圍成一個扇形的花園.
(1)試寫出扇形花園的面積y(m2)與半徑x(m)之間的函數(shù)關(guān)系式和自變量x的取值范圍;
(2)用描點法作出函數(shù)的圖象;
(3)當(dāng)扇形花園半徑為多少時,花園面積最大?最大面積是多少?此時這個扇形的圓心角是多大(精確到0.1度)?
(4)請回答:如果同樣用32m的籬笆圍成一個面積最大的矩形花園,這個花園的面積是多少?對比上面的結(jié)論,你有什么發(fā)現(xiàn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)在足球比賽中,當(dāng)守門員遠(yuǎn)離球門時,進(jìn)攻隊員常常使用“吊射”的戰(zhàn)術(shù)(把球高高地挑過守門員的頭頂,射入球門).一位球員在離對方球門30米的M處起腳吊射,假如球飛行的路線是一條拋物線,在離球門14米時,足球到達(dá)最大高度
32
3
米,如圖1,以球門底部為坐標(biāo)原點建立坐標(biāo)系,球門PQ的高度為2.44米,試通過計算說明,球是否會進(jìn)入球門?
(2)在(1)中,若守門員站在距球門2米遠(yuǎn)處,而守門員跳起后最多能摸到2.75米高處,他能否在空中截住這次吊射?
(3)如圖2,在另一次地面進(jìn)攻中,假如守門員站在離球門中央2米遠(yuǎn)的A處防守,進(jìn)攻隊員在離球門中央12米的B處,以120千米/小時的球速起腳射門,射向球門的立柱C,球門的寬度CD為7.2米,而守門員防守的最遠(yuǎn)水平距離S(米)與時間t(秒)之間的函數(shù)關(guān)系式為S=10t,問守門員能否擋住這次射門?
(4)在(3)的條件下,∠EAG區(qū)域為守門員的截球區(qū)域,試估計∠EAG的最大值(精確到0.1°).

查看答案和解析>>

同步練習(xí)冊答案