【題目】如圖,是的直徑,點(diǎn),是上兩點(diǎn),且,連接,,過點(diǎn)作交延長線于點(diǎn),垂足為.
(1)求證:是的切線;
(2)若,求的半徑.
【答案】(1)見解析;(2)圓O 的半徑為8
【解析】
(1)連結(jié)OC,由根據(jù)圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;
(2)連結(jié)BC,由AB為直徑得∠ACB=90°,由得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30度的直角三角形三邊的關(guān)系得,在Rt△ACB中,利用含30度的直角三角形三邊的關(guān)系得 AB=2BC=8,從而求出⊙O的半徑.
解:(1)證明:連結(jié)OC,如圖
∵弧FC=弧BC
∴∠FAC=∠BAC,
∵OA=OC,∴∠OAC=∠OCA,
∴∠FAC=∠OCA,∴0C // AF,
∵CD⊥AF,∴0C⊥CD,
∴CD是圓O的切線;
(2)連結(jié)BC,如圖,
∵AB為直徑,
∴∠ACB=90°,∵,
∴∠BOC= ×180°=60°,∴∠BAC=30,
∴∠DAC=30,在RtΔADC中,CD=,
∴AC=2CD=,在RtΔACB中,BC=AC==8,
∴AB=2BC=16,∴圓O 的半徑為8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明發(fā)現(xiàn)相機(jī)快門打開過程中,光圈大小變化如圖1所示,于是他繪制了如圖2所示的圖形.圖2中留個形狀大小都相同的四邊形圍成一個圓的內(nèi)接六邊形和一個小正六邊形,若PQ所在的直線經(jīng)過點(diǎn)M,PB=5cm,小正六邊形的面積為cm2,則該圓的半徑為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年12月17日,我國第一艘國產(chǎn)航母“山東艦”在海南三亞交付海軍.如圖,“山東艦”在一次試水測試中,航行至處,觀測指揮塔位于南偏西方向,在沿正南方向以30海里/小時的速度勻速航行2小時后,到達(dá)處,再觀測指揮塔位于南偏西方向,若繼續(xù)向南航行.求“山東艦”與指揮塔之間的最近距離為多少海里?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=﹣(x﹣m)2+4(m>0)的頂點(diǎn)為A,與直線x=相交于點(diǎn)B,點(diǎn)A關(guān)于直線x=的對稱點(diǎn)為C.
(1)若拋物線y=﹣(x﹣m)2+4(m>0)經(jīng)過原點(diǎn),求m的值.
(2)點(diǎn)C的坐標(biāo)為 .用含m的代數(shù)式表示點(diǎn)B到直線AC的距離為 .
(3)將y=﹣(x﹣m)2+4(m>0,且x≥)的函數(shù)圖象記為圖象G,圖象G關(guān)于直線x=的對稱圖象記為圖象H.圖象G與圖象H組合成的圖象記為圖象M.
①當(dāng)圖象M與x軸恰好有三個交點(diǎn)時,求m的值.
②當(dāng)△ABC為等腰直角三角形時,直接寫出圖象M所對應(yīng)的函數(shù)值小于0時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O 的半徑長為2,點(diǎn)C為直徑AB的延長線上一點(diǎn),且BC=2.過點(diǎn)C任作一條直線l.若直線l上總存在點(diǎn)P,使得過點(diǎn)P所作的⊙O 的兩條切線互相垂直,則∠ACP的最大值等于__________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y= x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A(1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2) 請你在拋物線的對稱軸上找點(diǎn)P,使△PCD是以CD為腰的等腰三角形,所有符合條件的點(diǎn)P的坐標(biāo)分別為 ;
(3)點(diǎn)E是線段BC上的一個動點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個球是白球的概率是多少?
(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對“隔離直線”給出如下定義:點(diǎn)是圖形上的任意一點(diǎn),點(diǎn)是圖形上的任意一點(diǎn),若存在直線:滿足且,則稱直線:是圖形與的“隔離直線”,如圖,直線:是函數(shù)的圖像與正方形的一條“隔離直線”.
(1)在直線①,②,③,④中,是圖函數(shù)的圖像與正方形的“隔離直線”的為 .
(2)如圖,第一象限的等腰直角三角形的兩腰分別與坐標(biāo)軸平行,直角頂點(diǎn)的坐標(biāo)是,⊙O的半徑為,是否存在與⊙O的“隔離直線”?若存在,求出此“隔離直線”的表達(dá)式:若不存在,請說明理由;
(3)正方形的一邊在軸上,其它三邊都在軸的左側(cè),點(diǎn)是此正方形的中心,若存在直線是函數(shù)的圖像與正方形的“隔離直線”,請直接寫出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com