(2013年四川綿陽12分)如圖,已知矩形OABC中,OA=2,AB=4,雙曲線(k>0)與矩形兩邊AB、BC分別交于E、F.
(1)若E是AB的中點,求F點的坐標;
(2)若將△BEF沿直線EF對折,B點落在x軸上的D點,作EG⊥OC,垂足為G,證明△EGD∽△DCF,并求k的值.
解:(1)∵點E是AB的中點,OA=2,AB=4,∴點E的坐標為(2,2)。
將點E的坐標代入,可得k=4。
∴反比例函數(shù)解析式為:。
∵點F的橫坐標為4,∴點F的縱坐標。
∴點F的坐標為(4,1)。
(2)結(jié)合圖形可設(shè)點E坐標為(,2),點F坐標為(4,),
則CF=,BF=DF=2﹣,ED=BE=AB﹣AE=4﹣,
在Rt△CDF中,。
由折疊的性質(zhì)可得:BE=DE,BF=DF,∠B=∠EDF=90°,
∵∠CDF+∠EDG=90°,∠GED+∠EDG=90°,∴∠CDF=∠GED。
又∵∠EGD=∠DCF=90°,∴△EGD∽△DCF。
∴,即。
∴=1,解得:k=3。
解析
科目:初中數(shù)學(xué) 來源: 題型:解答題
(如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上).
(1)若△CEF與△ABC相似.
①當AC=BC=2時,AD的長為_________;
②當AC=3,BC=4時,AD的長為_________;
(2)當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm.點E,F(xiàn),G分別從A,B,C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s.當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB'F,設(shè)點E,F(xiàn),G運動的時間為t(單位:s).
(1)當t= s時,四邊形EBFB'為正方形;
(2)若以點E,B,F(xiàn)為頂點的三角形與以點F,C,G為頂點的三角形相似,求t的值;
(3)是否存在實數(shù)t,使得點B'與點O重合?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一邊QP在BC邊上,E、F分別在AB、AC上,AD交EF于點H.
(1)求證:;
(2)設(shè)EF=x,當x為何值時,矩形EFPQ的面積最大?并求出最大面積;
(3)當矩形EFPQ的面積最大時,該矩形EFPQ以每秒1個單位的速度沿射線DA勻速向上運動(當矩形的邊PQ到達A點時停止運動),設(shè)運動時間為t秒,矩形EFPQ與△ABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式,并寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)
(1)若△CEF與△ABC相似.
①當AC=BC=2時,AD的長為 ;
②當AC=3,BC=4時,AD的長為 ;
(2)當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點D地邊AC上,點E、F在邊AB上,點G在邊BC上。
(1)求證:△ADE≌△BGF;
(2)若正方形DEFG的面積為16cm,求AC的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC三個定點坐標分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)請畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內(nèi)畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com