畫圖并討論:
已知△ABC,如圖所示,要求畫一個三角形,使它與△ABC有一個公共的頂點C,并且與△ABC全等.
甲同學(xué)的畫法是:(1)延長BC和AC;(2)在BC的延長線上取點D,使CD=BC;(3)在AC的延長線上取點E,使CE=AC;(4)連接DE,得△DEC.乙同學(xué)的畫法是:(1)延長AC和BC;(2)在BC的延長線上取點M,使CM=AC;(3)在AC的延長線上取點N,使CN=BC;(4)連接MN,得△MNC.
究竟哪種畫法對,有如下幾種可能:
①甲畫得對,乙畫得不對;②甲畫的不對,乙畫得對;③甲、乙都畫得對;④甲、乙都畫得不對;正確的結(jié)論是______.
這道題還可這樣完成:(1)用量角器量出∠ACB的度數(shù);(2)在∠ACB的外部畫射線CP,使∠ACP=∠ACB;(3)在射線CP上取點D,使CD=CB;(4)連接AD,△ADC就是所要畫的三角形、這樣畫的結(jié)果可記作△ABC≌______.
滿足題目要求的三角形可以畫出多少個呢?答案是______.
請你再設(shè)計一種畫法并畫出圖形.

解:對甲來說,由圖形可知,CD=BC、CE=AC,又有∠ACB=∠ECD
∴△ABC≌△EDC.故甲畫的對;


對乙來說,由圖形可知,AC=CM、BC=CN,∠ACB=∠MCN
∴△ACB≌△MCN,故乙的作法正確.
∴甲、乙都畫得對.故選③.
如圖:AC=AC CD=BC∠ACB=∠ACD
∴△ABC≌△ADC

設(shè)計如下:(1)用量角器量出∠ACB的度數(shù);
(2)在∠ACB的外部畫射線CE,使∠BCE=∠ACB;
(3)在射線CE上取點D,使CD=CA;
(4)連接BD,△BCD就是所要畫的三角形.

分析:①根據(jù)全等三角形的判定定理,找到邊角的相等關(guān)系,求解.②一個三角形繞一個端點可以有很多三角形產(chǎn)生,所以滿足要求的三角形有無數(shù)個.
點評:三角形全等的判定定理有:邊角邊,邊邊邊,角角邊,角邊角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、畫圖并討論:
已知△ABC,如圖所示,要求畫一個三角形,使它與△ABC有一個公共的頂點C,并且與△ABC全等.
甲同學(xué)的畫法是:(1)延長BC和AC;(2)在BC的延長線上取點D,使CD=BC;(3)在AC的延長線上取點E,使CE=AC;(4)連接DE,得△DEC.乙同學(xué)的畫法是:(1)延長AC和BC;(2)在BC的延長線上取點M,使CM=AC;(3)在AC的延長線上取點N,使CN=BC;(4)連接MN,得△MNC.
究竟哪種畫法對,有如下幾種可能:
①甲畫得對,乙畫得不對;②甲畫的不對,乙畫得對;③甲、乙都畫得對;④甲、乙都畫得不對;正確的結(jié)論是

這道題還可這樣完成:(1)用量角器量出∠ACB的度數(shù);(2)在∠ACB的外部畫射線CP,使∠ACP=∠ACB;(3)在射線CP上取點D,使CD=CB;(4)連接AD,△ADC就是所要畫的三角形、這樣畫的結(jié)果可記作△ABC≌
△ADC

滿足題目要求的三角形可以畫出多少個呢?答案是
無數(shù)個

請你再設(shè)計一種畫法并畫出圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、已知∠AOB及其內(nèi)部一點P,試討論以下問題的解答:
(1)如圖①,若點P在∠AOB的平分線上,我們可以過P點作直線垂直于角平分線,分別交OA、OB于點C、D,則可以得到△OCD是以CD為底邊的等腰三角形;若點P不在∠AOB的平分線上(如圖②),你能過P點作直線,分別交OA、OB于點C、D,得到△OCD是等腰三角形,且CD是底邊嗎?請你在圖②中畫出圖形,并簡要說明畫法.
(2)若點P不在∠AOB的平分線上(如圖③),我們可以過P點作PQ∥OA,并作∠QPR=∠AOB,直線PR分別交OA、OB于點C、D,則可以得到△OCD是以O(shè)C為底的等腰三角形.請你說明這樣作的理由.
(3)若點P不在∠AOB的平分線上,請你利用在(2)中學(xué)到的方法,在圖④中過P點作直線分別交OA、OB于點C、D,使得△OCD是等腰三角形,且OD是底邊.保留畫圖的痕跡,不用寫出畫法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:同步題 題型:解答題

畫圖并討論:
已知△ABC,如圖所示,要求畫一個三角形,使它與△ABC有一個公共的頂點C,并且與△ABC全等.
甲同學(xué)的畫法是:(1)延長BC和AC;(2)在BC的延長線上取點D,使CD=BC;(3)在AC的延長線上取點E,使CE=AC;(4)連接DE,得△DEC.乙同學(xué)的畫法是:(1)延長AC和BC;(2)在BC的延長線上取點M,使CM=AC;(3)在AC的延長線上取點N,使CN=BC;(4)連接MN,得△MNC.
究竟哪種畫法對,有如下幾種可能:
①甲畫得對,乙畫得不對;②甲畫的不對,乙畫得對;③甲、乙都畫得對;④甲、乙都畫得不對;正確的結(jié)論是_____
這道題還可這樣完成:(1)用量角器量出∠ACB的度數(shù);(2)在∠ACB的外部畫射線CP,使∠ACP=∠ACB;(3)在射線CP上取點D,使CD=CB;(4)連接AD,△ADC就是所要畫的三角形、這樣畫的結(jié)果可記作△ABC≌ _____
滿足題目要求的三角形可以畫出多少個呢?答案是_____
請你再設(shè)計一種畫法并畫出圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年北京市崇文區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知∠AOB及其內(nèi)部一點P,試討論以下問題的解答:
(1)如圖①,若點P在∠AOB的平分線上,我們可以過P點作直線垂直于角平分線,分別交OA、OB于點C、D,則可以得到△OCD是以CD為底邊的等腰三角形;若點P不在∠AOB的平分線上(如圖②),你能過P點作直線,分別交OA、OB于點C、D,得到△OCD是等腰三角形,且CD是底邊嗎?請你在圖②中畫出圖形,并簡要說明畫法.
(2)若點P不在∠AOB的平分線上(如圖③),我們可以過P點作PQ∥OA,并作∠QPR=∠AOB,直線PR分別交OA、OB于點C、D,則可以得到△OCD是以O(shè)C為底的等腰三角形.請你說明這樣作的理由.
(3)若點P不在∠AOB的平分線上,請你利用在(2)中學(xué)到的方法,在圖④中過P點作直線分別交OA、OB于點C、D,使得△OCD是等腰三角形,且OD是底邊.保留畫圖的痕跡,不用寫出畫法.


查看答案和解析>>

同步練習(xí)冊答案