解:(1)設(shè)長(zhǎng)為xm,寬為(50-x)m,則S=x•(50-x)=-(x-25)
2+625,所以當(dāng)每條邊長(zhǎng)為25m時(shí),才能使長(zhǎng)方形雞場(chǎng)的面積最大;
(2)正五邊形雞場(chǎng)面積更大;
對(duì)于事實(shí)2,我們給出下述證明:
如圖1、2,設(shè)正n邊形A
1A
2A
n與正(n+1)邊形A
1A
2A
n+1的周長(zhǎng)相等,下面我們證明
<
.在邊A
1A
2上任取一點(diǎn)(異于點(diǎn)A
1、A
2),這樣我們可以把A
1A
2A
n看成是(n+1)邊形A
1CA
2A
n,但它顯然不是正(n+1)邊形,它的周長(zhǎng)與正(n+1)邊形A
1A
2A
n+1的周長(zhǎng)相等,根據(jù)事實(shí)1,
<
,即
<
.
所以,等周長(zhǎng)n邊形的面積,當(dāng)邊數(shù)n越大時(shí),其面積也越大;
(3)在周長(zhǎng)相同的情況下,曲線圍成正多邊形面積較大;
正多邊形的邊數(shù)越大,圖形越接近于圓,面積也越大,當(dāng)邊數(shù)無限增大時(shí),正多邊形無限地接近于圓,面積越來越接近于一個(gè)固定的值,這個(gè)值就是所圍成的圓的面積;
(4)他講的有道理.
設(shè)寬為xm,長(zhǎng)為(100-2x)m,
則S=x•(100-2x)=-2(x-25)
2+1250,
所以當(dāng)長(zhǎng)為寬的2倍時(shí),才能使長(zhǎng)方形雞場(chǎng)的面積最大.
有更好的方法:
如圖4,如果將圖1中的點(diǎn)A、D分別向外移動(dòng).
那么ABCD仍然是四邊形,而將四邊形沿墻反射過來,這樣就得到一個(gè)新的封閉六邊形BCDC′B′A,它的周長(zhǎng)等于原籬笆長(zhǎng)度的兩倍.
所以當(dāng)六邊形BCDC′B′A為正六邊形,即AB=BC=CD,且∠BAD=∠CDA=60°,∠ABC=∠DCB=120°時(shí),六邊形BCDC′B′A的面積最大.
因而其一半即四邊形ABCD的面積也最大.由于周長(zhǎng)相等,
因此圖4中正六邊形BCDC′B′A的面積大于圖3中正方形BCC′B′的面積,
所以圖4中四邊形ABCD的面積大于圖3中四邊形ABCD的面積.
分析:(1)設(shè)一邊的長(zhǎng)為x,用它表示另一邊及面積,運(yùn)用函數(shù)性質(zhì)求解;
(2)、(3)可運(yùn)用割圓術(shù)的思路,在某一個(gè)多邊形的基礎(chǔ)上把一邊分成兩邊,細(xì)化下去便是圓;
(4)由(1)知小明講的有道理.
點(diǎn)評(píng):此題檢測(cè)學(xué)生理解知識(shí)和運(yùn)用知識(shí)的能力,考查學(xué)生的自主學(xué)習(xí)能力,因?yàn)槔碚撔暂^強(qiáng),所以宜作競(jìng)賽題使用.