【題目】如圖1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,點B在線段AE上,點C在線段AD上.
(1)請直接寫出線段BE與線段CD的關(guān)系: ;
(2)如圖2,將圖1中的△ABC繞點A順時針旋轉(zhuǎn)角α(0<α<360°),
①(1)中的結(jié)論是否成立?若成立,請利用圖2證明;若不成立,請說明理由;
②當AC=ED時,探究在△ABC旋轉(zhuǎn)的過程中,是否存在這樣的角α,使以A、B、C、D四點為頂點的四邊形是平行四邊形?若存在,請直接寫出角α的度數(shù);若不存在,請說明理由.
【答案】(1)BE=CD;(2)①成立;②存在,45°或225°.
【解析】
試題分析:(1)由△ABC和△AED都是等腰直角三角形,得到AB=AC,AE=AD,即可得到BE=CD;
(2)①由△ABC和△AED都是等腰直角三角形,得到AB=AC,AE=AD,由旋轉(zhuǎn)的性質(zhì)可得∠BAE=∠CAD,得到△BAE≌△CAD,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
②由平行四邊形的性質(zhì)可得∠ABC=∠ADC=45°,再由等腰直角三角形的性質(zhì)即可得到結(jié)論.
試題解析:(1)∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC,AE=AD,∴AE﹣AB=AD﹣AC,∴BE=CD;
(2)①成立,理由如下:
∵△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC,AE=AD,由旋轉(zhuǎn)的性質(zhì)可得∠BAE=∠CAD,在△BAE與△CAD中,∵AB=AC,∠BAE=∠CAD,AE=AD,∴△BAE≌△CAD(SAS),∴BE=CD;
②存在,α=45°.∵以A、B、C、D四點為頂點的四邊形是平行四邊形,∴∠ABC=∠ADC=45°,∵AC=ED,∴∠CAD=45°,或360°﹣90°﹣45°=225°,∴角α的度數(shù)是45°或225°.
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發(fā),以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發(fā),仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運動的時間為x秒(0<x≤3),解答下列問題:
(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當x為何值時,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠一周計劃每日生產(chǎn)自行車100輛,由于工人實行輪休,每日上班人數(shù)不一定相等,實際每日生產(chǎn)量與計劃量相比情況如下表(以計劃量為標準,增加的車輛數(shù)記為正數(shù),減少的車輛數(shù)記為負數(shù)):
(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少輛?
(2)本周總的生產(chǎn)量是多少輛?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是它的角平分線,G是AD上的一點,BG,CG分別平分∠ABC,∠ACB,GH⊥BC,垂足為H,求證:
(1)∠BGC=90°+ ∠BAC;
(2)∠1=∠2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC是等邊三角形,點D、E分別在邊AB、BC上,CD、AE交于點F,∠AFD=60°.
(1)如圖1,求證:BD=CE;
(2)如圖2,F(xiàn)G為△AFC的角平分線,點H在FG的延長線上,HG=CD,連接HA、HC,求證:∠AHC=60°;
(3)在(2)的條件下,若AD=2BD,F(xiàn)H=9,求AF長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學對全校學生進行文明禮儀知識測試,為了了解測試結(jié)果,隨機抽取部分學生的成績進行分析,將成績分為三個等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計圖,請你根據(jù)圖中所給的信息解答下列問題:
(1)請將下面條形統(tǒng)計圖補充完整;
(2)“一般”等級所在扇形的圓心角的度數(shù)是度;
(3)若“一般”和“優(yōu)秀”均被視為達標成績,該校學生有1200人,請你估計此次測試中,全校達標的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線經(jīng)過A(0,2),B(3,2)兩點,若兩動點D、E同時從原點O分別沿著x軸、y軸正方向運動,點E的速度是每秒1個單位長度,點D的速度是每秒2個單位長度.
(1)求拋物線與x軸的交點坐標;
(2)若點C為拋物線與x軸的交點,是否存在點D,使A、B、C、D四點圍成的四邊形是平行四邊形?若存在,求點D的坐標;若不存在,說明理由;
(3)問幾秒鐘時,B、D、E在同一條直線上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,O為直線AB上一點,過點O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點O以每秒3°的速度沿順時針方向旋轉(zhuǎn)一周.如圖2,經(jīng)過t秒后,OM恰好平分∠BOC.①求t的值;②此時ON是否平分∠AOC?請說明理由;
(2)在(1)問的基礎(chǔ)上,若三角板在轉(zhuǎn)動的同時,射線OC也繞O點以每秒6°的速度沿順時針方向旋轉(zhuǎn)一周,如圖3,那么經(jīng)過多長時間OC平分∠MON?請說明理由;
(3)在(2)問的基礎(chǔ)上,經(jīng)過多長時間OC平分∠MOB?請畫圖并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com