【題目】如圖,已知∠1和∠2互為補(bǔ)角,∠A=D,求證:∠B=C

請在下面的證明過程的括號內(nèi),填寫依據(jù).

證明:∵∠1與∠CGD是對頂角,

∴∠1=CGD

∵∠1+2=180°(已知)

∴∠2+CGD=180°(等量代換)

AE//FD

∴∠AEC=D

∵∠A=D(已知)

∴∠AEC=A

AB//CD

∴∠B=C

【答案】見詳解

【解析】

根據(jù)平行線的判定和性質(zhì)補(bǔ)充完整證明的過程即可.

證明:∵∠1與∠CGD是對頂角,

∴∠1=CGD(對頂角相等)

∵∠1+2=180°(已知)

∴∠2+CGD=180°(等量代換)

AE//FD(同旁內(nèi)角互補(bǔ),兩直線平行)

∴∠AEC=D(兩直線平行,同位角相等)

∵∠A=D(已知)

∴∠AEC=A(等量代換)

AB//CD(內(nèi)錯角相等,兩直線平行)

∴∠B=C(兩直線平行,內(nèi)錯角相等)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與y軸交于點(diǎn)B0,2),與反比例函數(shù)y的圖象交于點(diǎn)A4,﹣1).

1)求反比例函數(shù)的表達(dá)式和一次函數(shù)表達(dá)式;

2)如果點(diǎn)Px軸上的一點(diǎn),且△ABP的面積是3,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的四個內(nèi)角的平分線分別相交于點(diǎn)、,四邊形是怎樣的特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,對角線AC,BD相交于點(diǎn)O,點(diǎn)E是AD邊上一點(diǎn),連接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于點(diǎn)F,CP交BD于點(diǎn)G,連接PO,若PO∥BC,則四邊形OFPG的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,已知,.

1)求的度數(shù);

2)求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,分別探討下面三個圖形中∠AEC與∠EAB,∠ECD之間的關(guān)系,請你從所得到的關(guān)系中任選一個加以證明.

1)在圖1中,∠AEC與∠EAB,∠ECD之間的關(guān)系是:________________

2)在圖2中,∠AEC與∠EAB,∠ECD之間的關(guān)系是:________________

3)在圖3中,∠AEC與∠EAB,∠ECD之間的關(guān)系是:________________

4)在圖______中,求證:________________.(并寫出完整的證明過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣4,﹣3,﹣2,﹣10,1,3,4,5這九個數(shù)中,隨機(jī)抽取一個數(shù),記為a,則數(shù)a使關(guān)于x的不等式組至少有四個整數(shù)解,且關(guān)于x的分式方程1有非負(fù)整數(shù)解的概率是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將放在每個小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,C均落在格點(diǎn)上.
(1)計算AB邊的長等于;
(2)在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個以AB為一邊的矩形,使矩形的面積等于△ABC的面積,并簡要說明畫圖的方法(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

材料1:對于一個關(guān)于的二次三項式,除了可以利用配方法求該多項式的取值范圍外,愛思考的小川同學(xué)還想到了其他的方法;比如先令,然后移項可得:,再利用一元二次方程根的判別式來確定的取值范圍,請仔細(xì)閱讀下面的例子:

例:求的取值范圍;

解:令

;

材料2:在學(xué)習(xí)完一元二次方程的解法后,愛思考的小川同學(xué)又想到仿造一元二次方程的解法來解決一元二次不等式的解集問題,他的具體做法如下:

若關(guān)于的一元二次方程有兩個不相等的實(shí)數(shù)根、,則關(guān)于的一元二次不等式的解集為:;則關(guān)于的一元二次不等式的的解集為:

材料3:若關(guān)于的一元二次方程有兩個不相等的實(shí)數(shù)根、;則,我們稱之為韋達(dá)定理;

請根據(jù)上述材料,解答下列問題:

1)若關(guān)于的二次三項式為常數(shù))的最小值為,則________

2)求出代數(shù)式的取值范圍.

3)若關(guān)于的代數(shù)式(其中、為常數(shù),且)的最小值為,最大值為4,請求出滿足條件的、的值.

查看答案和解析>>

同步練習(xí)冊答案