【題目】小華為了測(cè)量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達(dá)坡頂D處.已知斜坡的坡角為15°.小華的身高ED1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(計(jì)算結(jié)果精確到1m)(參考數(shù)據(jù):sin15°,cos15°,tan15°)

【答案】樓房AB的高度約為26m

【解析】

由題意,可知題目中先根據(jù)RtBDC15°的銳角三角函數(shù)值和BE的長(zhǎng)可求出BCDC的長(zhǎng),再在RtAEF中求出AF的長(zhǎng),最后可得出AB的高度.

解:作DHABH,

∵∠DBC15°,BD20,

BCBDcosDBC20×19.2,CDBDsinDBC20×5,

由題意得,四邊形ECBF和四邊形CDHB是矩形,

EFBC19.2,BHCD5,

∵∠AEF45°,

AFEF19.2,

ABAF+FH+HB19.2+1.6+525.8≈26m

答:樓房AB的高度約為26m

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0)和C0,3).(1)求拋物線的解析式;(2)在拋物線的對(duì)稱軸上,是否存在點(diǎn)P,使PA+PC的值最?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由;(3)設(shè)點(diǎn)M在拋物線的對(duì)稱軸上,當(dāng)△MAC是直角三角形時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+ca≠0)的對(duì)稱軸為直線x=﹣1,圖象經(jīng)過(guò)B(﹣3,0)、C0,3)兩點(diǎn),且與x軸交于點(diǎn)A

1)求二次函數(shù)yax2+bx+ca≠0)的表達(dá)式;

2)在拋物線的對(duì)稱軸上找一點(diǎn)M,使ACM周長(zhǎng)最短,求出點(diǎn)M的坐標(biāo);

3)若點(diǎn)P為拋物線對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),直接寫(xiě)出使BPC為直角三角形時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:RtABC中,∠ACB90°,點(diǎn)EAB上一點(diǎn),ACAE3,BC4,過(guò)點(diǎn)AAB的垂線交射線EC于點(diǎn)D,延長(zhǎng)BCAD于點(diǎn)F

(1)CF的長(zhǎng);

(2)求∠D的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D在邊BC上,∠CAD=∠B,點(diǎn)E在邊AB上,聯(lián)結(jié)CEAD于點(diǎn)H,點(diǎn)FCE上,且滿足CFCECDBC

(1)求證:△ACF∽△ECA;

(2)當(dāng)CE平分∠ACB時(shí),求證:=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線l1:y=(x﹣2)2﹣4與x軸分別交于O、A兩點(diǎn),將拋物線l1向上平移得到l2,過(guò)點(diǎn)A作AB⊥x軸交拋物線l2于點(diǎn)B,如果由拋物線l1、l2、直線AB及y軸所圍成的陰影部分的面積為12,則拋物線l2的函數(shù)表達(dá)式為( 。

A. y=(x﹣2)2﹣1 B. y=(x﹣2)2+1 C. y=(x﹣2)2﹣2 D. y=(x﹣2)2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD,動(dòng)點(diǎn)E在AC上,AF⊥AC,垂足為A,AF=AE.

(1)BF和DE有怎樣的數(shù)量關(guān)系?請(qǐng)證明你的結(jié)論;

(2)在其他條件都保持不變的是情況下,當(dāng)點(diǎn)E運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AFBE是什么特殊四邊形?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(4,2),B(2,6),C(0,4)是直角坐標(biāo)系平面上三點(diǎn).

(1)ABC向右平移4個(gè)單位再向下平移1個(gè)單位,得到A1B1C1,畫(huà)出平移后的圖形;

(2)ABC內(nèi)部有一點(diǎn)P(a,b),則平移后它的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為__________;

(3)以原點(diǎn)O為位似中心,將ABC縮小為原來(lái)的一半,得到A2B2C2,請(qǐng)?jiān)谒o的坐標(biāo)系中作出所有滿足條件的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程(k22x2+2k+1x+10有實(shí)數(shù)解,且反比例函數(shù)y的圖象經(jīng)過(guò)第二、四象限,若k是常數(shù),則k的值為(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習(xí)冊(cè)答案