如圖所示,一條自西向東的觀光大道l上有A、B兩個景點,A、B相距2km,在A處測得另一景點C位于點A的北偏東60°方向,在B處測得景點C位于景點B的北偏東45°方向,求景點C到觀光大道l的距離.(結果精確到0.1km)
解:如圖,過點C作CD⊥l于點D,設CD=xkm,

在△ACD中,∵∠ADC=90°,∠CAD=30°,
∴AD=CD=xkm。
在△BCD中,∵∠BDC=90°,∠CBD=45°,
∴BD=CD=xkm。
∵AD﹣BD=AB,∴x﹣x=2!鄕=+1≈2.7(km)。
答:景點C到觀光大道l的距離約為2.7km.

試題分析:過點C作CD⊥l于點D,設CD=xkm.先解直角△ACD,得出AD=CD=xkm,再解直角△BCD,得出BD=CD=xkm,然后根據(jù)AD﹣BD=AB,列出關于x的方程,解方程即可。 
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:計算題

計算:.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,反比例函數(shù)的圖象經過線段OA的端點A,O為原點,作AB⊥x軸于點B,點B的坐標為(2,0),tan∠AOB=。

(1)求k的值;
(2)將線段AB沿x軸正方向平移到線段DC的位置,反比例函數(shù)的圖象恰好經過DC的中點E,求直線AE的函數(shù)表達式;
(3)若直線AE與x軸交于點M、與y軸交于點N,請你探索線段AN與線段ME的大小關系,寫出你的結論并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

計算:

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,圖1是某倉庫的實物圖片,圖2是該倉庫屋頂(虛線部分)的正面示意圖,BE、CF關于AD軸對稱,且AD、BE、CF都與EF垂直,AD=3米,在B點測得A點的仰角為30°,在E點測得D點的仰角為20°,EF=6米,求BE的長.
(結果精確到0.1米,參考數(shù)據(jù):

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

計算的結果是【   】
A. B.4 C. D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

分)在△ABC中,若,則∠C的度數(shù)是【   】
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:計算題

計算:

查看答案和解析>>

同步練習冊答案